簡易檢索 / 詳目顯示

研究生: 王泓文
Wang, Hong-Wen
論文名稱: 微膠細胞與星狀膠細胞在缺血性中風誘導神經死亡之角色
The roles of microglia and astrocytes in ischemic stroke-induced neuronal death
指導教授: 張雅雯
Chang, Alice Y.W.
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 138
中文關鍵詞: 神經死亡微膠細胞星狀膠細胞細胞死亡途徑細胞自噬
外文關鍵詞: Neuronal death, microglia, astrocytes, cell death pathways, autophagy
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 缺血性中風導致患者腦神經死亡與神經功能障礙,因此預防缺血性中風所造成的神經死亡為目前關鍵治療研究之一。腦中除了神經細胞之外,更多的是神經膠細胞,包括:微膠細胞與星狀膠細胞,研究證實微膠細胞與星狀膠細胞在中風後的神經死亡扮演重要的角色,但其中的機制目前仍有許多不清楚。過去的研究發現,缺血性中風導致神經死亡透過的途徑有細胞凋亡與細胞壞死,至今,有更多的死亡途徑被發現,包括:細胞程序性壞死、細胞焦亡與細胞自噬,然而這些死亡途徑在缺血性中風後的神經細胞、微膠細胞與星狀膠細胞中扮演的角色仍未釐清,因此,本研究主要探討缺血性中風後的神經細胞、微膠細胞與星狀膠細胞之死亡途徑,及微膠細胞與星狀膠細胞在神經死亡中扮演的角色。本研究利用缺氧缺糖或缺氧處理神經細胞 (N18)、微膠細胞 (BV-2)與星狀膠細胞 (C6),來模擬活體動物發生缺血性中風的現象。首先觀察到在缺血性中風處理下,神經細胞與微膠細胞,相較星狀膠細胞,細胞增生情形顯著下降,且細胞內Cleaved-caspase-3蛋白與RIP1蛋白表現量顯著上升,Caspase-1活性顯著上升,培養基中乳酸脫氫酶顯著增加,表示細胞凋亡、細胞程序性壞死、細胞焦亡與壞死被活化,而在星狀膠細胞中則無觀察到此現象。細胞自噬則在缺血性中風後的神經細胞、微膠細胞與星狀膠細胞都有被活化,但神經細胞與星狀膠細胞內的自噬體與溶酶體無結合,導致自噬體堆積。而缺血性中風早期,活化細胞自噬有助於細胞存活,在晚期,抑制細胞自噬則有助於細胞存活,但若是溶酶體的功能缺失,不論早期或晚期皆造成細胞死亡。最後發現缺氧缺糖處理的微膠細胞條件培養基有助於神經細胞增生,進一步發現隨缺氧缺糖處理,微膠細胞M1型態之基因表現 (il-1, cd86)逐漸下降,而M2型態之基因表現 (arg-1)則顯著上升,且與神經細胞共培養下,增加神經細胞內自噬體形成。本研究結論:缺血性中風造成神經細胞與微膠細胞死亡,透過活化細胞凋亡、細胞程序性壞死、細胞焦亡與壞死等途徑,而細胞自噬則隨中風時間增加對細胞有不同的影響,早期有助於細胞存活,後期則會造成存活下降。其中發現缺氧缺糖的微膠細胞有助於神經細胞的存活,透過M2型態的轉換及早期活化神經細胞自噬。

    Ischemic stroke is one of the critical brain injuries that cause neuronal death and neurological deficit in patients. The microglia and astrocytes could play an important role in ischemic stroke. However, the underlying mechanisms of microglia and astrocytes in the neuronal consequences after ischemic stroke have not been thoroughly investigated. In the present study, we aimed to identify the cell fate of microglia and astrocyte, their contribution to ischemic stroke-induced neuronal consequence, and identify potential mediators in these processes. Neurons, microglia and astrocytes cell lines (N18, BV-2, and C6, respectively) were treated with oxygen-glucose deprivation (OGD) or hypoxia serving as an in vitro model of ischemic stroke. The microglia and neurons, rather than astrocytes were more vulnerable to ischemic condition. The apoptosis, necrosis, necroptosis, pyroptosis were elicited in ischemic neurons and microglia, but not in astrocytes. Autophagy were elicited in and played an important role in ischemic neurons, microglia and astrocytes. Finally, the ischemic microglia promoted neuronal survival by transform of M2 type and activation of neuronal autophagy.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖與表目錄 VIII 縮寫 XII 壹、緒論 (Introduction) 1 一、缺血性中風 (Ischemic stroke) 1 二、缺血性中風誘導的神經死亡途徑 (Neuronal death pathways) 3 三、微膠細胞 (Microglia)與星狀膠細胞 (Astrocytes)在缺血性腦之角色 10 四、研究目的 13 貳、材料與方法 (Materials and Methods) 14 一、實驗組別 14 二、藥物配製 14 三、細胞培養 15 四、細胞存活試驗 (XTT cell proliferation assay) 18 五、細胞毒性試驗 (LDH cytotoxicity assay) 18 六、細胞週期分析 19 七、核醣核酸 (Ribonucleic acid; RNA)表現量分析 19 八、蛋白質表現量分析 21 九、免疫螢光染色 (Immunofluorescence assay) 25 十、統計分析 25 參、結果 (Results) 26 一、缺血性中風對神經細胞、微膠細胞與星狀膠細胞之型態與存活影響 26 二、缺血性中風誘導神經細胞、微膠細胞與星狀膠細胞之細胞死亡途徑活化現象 27 三、細胞凋亡、程序性壞死、壞死與細胞焦亡對缺血性中風後神經細胞、微膠細胞與星狀膠細胞之存活影響 28 四、細胞自噬在缺血性中風後神經細胞、微膠細胞與星狀膠細胞的活化狀況及對細胞存活之影響 30 五、缺血性中風後微膠細胞與星狀膠細胞對神經細胞存活之影響及可能機制 33 六、缺血性中風後微膠細胞與星狀膠細胞調控神經細胞存活之可能分子 34 肆、討論 (Discussion) 35 一、研究重要發現 35 二、細胞自噬在缺血性中風腦之角色 36 三、缺氧缺糖與缺氧作為體外缺血性中風模式之差異 37 四、研究重要性 38 五、未來展望 39 伍、參考文獻 (References) 40 陸、圖與表 (Figures and Tables) 47

    Abe, K., Aoki, M., Kawagoe, J., Yoshida, T., Hattori, A., Kogure, K., & Itoyama, Y. (1995). Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke, 26(8), 1478-1489.
    Abreu, D., Sousa, P., Matias-Dias, C., & Pinto, F. J. (2018). Cardiovascular disease and high blood pressure trend analyses from 2002 to 2016: after the implementation of a salt reduction strategy. BMC Public Health, 18(1), 722. doi:10.1186/s12889-018-5634-z
    Adams, K. L., & Gallo, V. (2018). The diversity and disparity of the glial scar. Nat Neurosci, 21(1), 9-15. doi:10.1038/s41593-017-0033-9
    Alqahtani, S. A., Stemer, A. B., McCullough, M. F., Bell, R. S., Mai, J., Liu, A. H., & Armonda, R. A. (2017). Endovascular Management of Stroke Patients with Large Vessel Occlusion and Minor Stroke Symptoms. Cureus, 9(6), e1355. doi:10.7759/cureus.1355
    Amantea, D., Micieli, G., Tassorelli, C., Cuartero, M. I., Ballesteros, I., Certo, M., . . . Bagetta, G. (2015). Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci, 9, 147. doi:10.3389/fnins.2015.00147
    Arcuri, C., Mecca, C., Bianchi, R., Giambanco, I., & Donato, R. (2017). The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci, 10, 191. doi:10.3389/fnmol.2017.00191
    Banati, R. B., Gehrmann, J., Schubert, P., & Kreutzberg, G. W. (1993). Cytotoxicity of microglia. Glia, 7(1), 111-118. doi:10.1002/glia.440070117
    Bennion, D. M., Steckelings, U. M., & Sumners, C. (2018). Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond), 132(10), 1055-1067. doi:10.1042/CS20171549
    Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 7(2), 99-109. doi:10.1038/nrmicro2070
    Bottinger, E. P., Jakubczak, J. L., Roberts, I. S., Mumy, M., Hemmati, P., Bagnall, K., . . . Wakefield, L. M. (1997). Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J, 16(10), 2621-2633. doi:10.1093/emboj/16.10.2621
    Brennan, M. A., & Cookson, B. T. (2000). Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol, 38(1), 31-40.
    Cai, X., Liu, Y., Hu, Y., Liu, X., Jiang, H., Yang, S., . . . Xiong, L. (2018). ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells. Redox Biol, 18, 65-76. doi:10.1016/j.redox.2018.06.010
    Chan, F. K., Shisler, J., Bixby, J. G., Felices, M., Zheng, L., Appel, M., . . . Lenardo, M. J. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem, 278(51), 51613-51621. doi:10.1074/jbc.M305633200
    Chen, J., Wang, Z., Zheng, Z., Chen, Y., Khor, S., Shi, K., . . . Xiao, J. (2017). Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-kappaB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis, 8(10), e3090. doi:10.1038/cddis.2017.490
    Chen, W. R., Liu, H. B., Chen, Y. D., Sha, Y., Ma, Q., Zhu, P. J., & Mu, Y. (2018). Melatonin Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy Via an AMPK/mTOR Signaling Pathway. Cell Physiol Biochem, 47(5), 2067-2076. doi:10.1159/000491474
    Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., & Korsmeyer, S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell, 8(3), 705-711.
    Cho, M. H., Cho, K., Kang, H. J., Jeon, E. Y., Kim, H. S., Kwon, H. J., . . . Yoon, S. Y. (2014). Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 10(10), 1761-1775. doi:10.4161/auto.29647
    Clarke, L. E., Liddelow, S. A., Chakraborty, C., Munch, A. E., Heiman, M., & Barres, B. A. (2018). Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A, 115(8), E1896-E1905. doi:10.1073/pnas.1800165115
    Clarke, P. G. (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl), 181(3), 195-213.
    Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., . . . Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 1(2), 112-119. doi:10.1038/nchembio711
    del Zoppo, G. J., Milner, R., Mabuchi, T., Hung, S., Wang, X., Berg, G. I., & Koziol, J. A. (2007). Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke, 38(2 Suppl), 646-651. doi:10.1161/01.STR.0000254477.34231.cb
    Di Malta, C., Fryer, J. D., Settembre, C., & Ballabio, A. (2012). Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci U S A, 109(35), E2334-2342. doi:10.1073/pnas.1209577109
    Draaisma, L. R., Wessel, M. J., & Hummel, F. C. (2018). Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci Lett. doi:10.1016/j.neulet.2018.06.047
    Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391(6662), 43-50. doi:10.1038/34112
    Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of Phosphatidylserine on the Surface of Apoptotic Lymphocytes Triggers Specific Recognition and Removal by Macrophages. Journal of Immunology, 148(7), 2207-2216.
    Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M., & Brown, G. C. (2018). Neuronal Cell Death. Physiol Rev, 98(2), 813-880. doi:10.1152/physrev.00011.2017
    Fuchs, Y., & Steller, H. (2015). Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol, 16(6), 329-344. doi:10.1038/nrm3999
    Glucksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc, 26(1), 59-86.
    Graeber, M. B., & Streit, W. J. (2010). Microglia: biology and pathology. Acta Neuropathol, 119(1), 89-105. doi:10.1007/s00401-009-0622-0
    Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., . . . Mizushima, N. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441(7095), 885-889. doi:10.1038/nature04724
    Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., . . . Lo, E. H. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 535(7613), 551-555. doi:10.1038/nature18928
    He, W. T., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., . . . Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res, 25(12), 1285-1298. doi:10.1038/cr.2015.139
    Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., . . . Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 1(6), 489-495. doi:10.1038/82732
    Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., . . . Kaelin, W. G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292(5516), 464-468. doi:10.1126/science.1059817
    Kaushik, S., & Cuervo, A. M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8), 407-417. doi:10.1016/j.tcb.2012.05.006
    Klionsky, D. J. (2008). Autophagy revisited: a conversation with Christian de Duve. Autophagy, 4(6), 740-743.
    Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., . . . Chiba, T. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3), 425-434. doi:10.1083/jcb.200412022
    Ktistakis, N. T., & Tooze, S. A. (2016). Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol, 26(8), 624-635. doi:10.1016/j.tcb.2016.03.006
    Lampl, Y., Boaz, M., Gilad, R., Lorberboym, M., Dabby, R., Rapoport, A., . . . Sadeh, M. (2007). Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology, 69(14), 1404-1410. doi:10.1212/01.wnl.0000277487.04281.db
    Lan, X., Han, X., Li, Q., Yang, Q. W., & Wang, J. (2017). Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol, 13(7), 420-433. doi:10.1038/nrneurol.2017.69
    Lee, S., Choi, E., Cha, M. J., & Hwang, K. C. (2015). Looking for Pyroptosis-Modulating miRNAs as a Therapeutic Target for Improving Myocardium Survival. Mediators Inflamm, 2015, 254871. doi:10.1155/2015/254871
    Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 69(7), 1125-1136. doi:10.1007/s00018-011-0865-5
    Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., . . . Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481-487. doi:10.1038/nature21029
    Lipton, P. (1999). Ischemic cell death in brain neurons. Physiol Rev, 79(4), 1431-1568. doi:10.1152/physrev.1999.79.4.1431
    Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci, 4(5), 399-415. doi:10.1038/nrn1106
    Lucin, K. M., O'Brien, C. E., Bieri, G., Czirr, E., Mosher, K. I., Abbey, R. J., . . . Wyss-Coray, T. (2013). Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease. Neuron, 79(5), 873-886. doi:10.1016/j.neuron.2013.06.046
    Macchi, B., Marino-Merlo, F., Nocentini, U., Pisani, V., Cuzzocrea, S., Grelli, S., & Mastino, A. (2015). Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol, 287, 80-87. doi:10.1016/j.jneuroim.2015.08.016
    Magistretti, P. J., & Allaman, I. (2018). Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci, 19(4), 235-249. doi:10.1038/nrn.2018.19
    Motori, E., Puyal, J., Toni, N., Ghanem, A., Angeloni, C., Malaguti, M., . . . Bergami, M. (2013). Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab, 18(6), 844-859. doi:10.1016/j.cmet.2013.11.005
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., . . . Dixit, V. M. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell, 85(6), 817-827.
    Peng, C., Rao, W., Zhang, L., Gao, F., Hui, H., Wang, K., . . . Fei, Z. (2018). Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy. Cell Physiol Biochem, 46(6), 2311-2324. doi:10.1159/000489621
    Pulera, M. R., Adams, L. M., Liu, H. T., Santos, D. G., Nishimura, R. N., Yang, F. S., . . . Wasterlain, C. G. (1998). Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke, 29(12), 2622-2629. doi:Doi 10.1161/01.Str.29.12.2622
    Ricci, C., Wood, A., Muller, D., Gunter, M. J., Agudo, A., Boeing, H., . . . Ferrari, P. (2018). Alcohol intake in relation to non-fatal and fatal coronary heart disease and stroke: EPIC-CVD case-cohort study. BMJ, 361, k934. doi:10.1136/bmj.k934
    Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., . . . Guan, K. L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology, 15(7), 741-750. doi:10.1038/ncb2757
    Saver, J. L., Mattle, H. P., & Thaler, D. (2018). Patent Foramen Ovale Closure Versus Medical Therapy for Cryptogenic Ischemic Stroke: A Topical Review. Stroke, 49(6), 1541-1548. doi:10.1161/STROKEAHA.117.018153
    Schaeffer, E. L., da Silva, E. R., Novaes Bde, A., Skaf, H. D., & Gattaz, W. F. (2010). Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry, 34(8), 1381-1389. doi:10.1016/j.pnpbp.2010.08.019
    Staub, F., Mackert, B., Kempski, O., Peters, J., & Baethmann, A. (1993). Swelling and death of neuronal cells by lactic acid. J Neurol Sci, 119(1), 79-84.
    Su, Z., Yang, Z., Xu, Y., Chen, Y., & Yu, Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 14, 48. doi:10.1186/s12943-015-0321-5
    Sun, D., Wang, W., Wang, X., Wang, Y., Xu, X., Ping, F., . . . Cui, D. (2018). bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis, 9(2), 172. doi:10.1038/s41419-017-0229-7
    Suwanwela, N., & Koroshetz, W. J. (2007). Acute ischemic stroke: overview of recent therapeutic developments. Annu Rev Med, 58, 89-106. doi:10.1146/annurev.med.58.070605.115306
    Takeshige, K., Baba, M., Tsuboi, S., Noda, T., & Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2), 301-311.
    Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 9(3), 231-241. doi:10.1038/nrm2312
    Vakkila, J., & Lotze, M. T. (2004). Inflammation and necrosis promote tumour growth. Nat Rev Immunol, 4(8), 641-648. doi:10.1038/nri1415
    Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., & Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol, 15(2), 135-147. doi:10.1038/nrm3737
    Wang, C. W., & Klionsky, D. J. (2003). The molecular mechanism of autophagy. Mol Med, 9(3-4), 65-76.
    Xin, W., & Bonci, A. (2018). Functional Astrocyte Heterogeneity and Implications for Their Role in Shaping Neurotransmission. Front Cell Neurosci, 12, 141. doi:10.3389/fncel.2018.00141
    Xing, C., Arai, K., Lo, E. H., & Hommel, M. (2012). Pathophysiologic cascades in ischemic stroke. Int J Stroke, 7(5), 378-385. doi:10.1111/j.1747-4949.2012.00839.x
    Xiong, X. Y., Liu, L., & Yang, Q. W. (2016). Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol, 142, 23-44. doi:10.1016/j.pneurobio.2016.05.001
    Xu, M., & Zhang, H. L. (2011). Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin, 32(9), 1089-1099. doi:10.1038/aps.2011.50
    Yang, H. M., Yang, S., Huang, S. S., Tang, B. S., & Guo, J. F. (2017). Microglial Activation in the Pathogenesis of Huntington's Disease. Front Aging Neurosci, 9, 193. doi:10.3389/fnagi.2017.00193
    Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ, 12 Suppl 2, 1542-1552. doi:10.1038/sj.cdd.4401765
    Zhang, J., Zhang, H., Li, J., Rosenberg, S., Zhang, E. C., Zhou, X., . . . Farabaugh, M. (2011). RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res, 51(2-3), 227-236. doi:10.1007/s12026-011-8249-3
    Zhang, X., Wan, J. Q., & Tong, X. P. (2018). Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neurosci Ther, 24(4), 311-318. doi:10.1111/cns.12804

    無法下載圖示 校內:2023-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE