| 研究生: |
毛久珊 Mao, Jiou-Shan |
|---|---|
| 論文名稱: |
探討GAS7基因功能及其過度表現對肺癌轉移抑制作用 The Function of GAS7 Gene and Its Effects of Overexpression on Metastasis-Suppression of Lung Cancer |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 生長休止基因七 、肺癌 、轉移抑制 |
| 外文關鍵詞: | GAS7, lung cancer, metastasis-suppression |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
研究目的:GAS7 基因是 growth-arrest-specific gene family (GAS family) 的成員之ㄧ,本實驗室先前利用高解析染色體異質性喪失分析方法 (high-resolution genome-wide loss of heterozygosity) 發現 GAS7 基因所位於的染色體區位 17p 13.1 是一個染色體高度異質性喪失的區域。我們進一步利用 RT-PCR 及 immunohistochemistry (IHC) 方法分析肺癌病人 GAS7 mRNA 和蛋白質的表現情形,結果顯示在肺癌病人中 GAS7 mRNA 和蛋白質分別有高達 45.1% 和 57.3% 低表達的情形,促使我們深入去探討 GAS7 基因在肺癌的變異機制。
研究材料與方法:首先我們將 GAS7C 在肺癌細胞中 overexpression 並分別用流式細胞儀 (FACS)、細胞爬行移動力實驗 (wound healing assay 及 transwell-migration assay)、細胞侵略移動力實驗 (invasion assay) 來觀察 GAS7C overexpression 對細胞週期及細胞移動能力的影響。並且在動物癌症轉移模組中,探討 GAS7C overexpression 對癌細胞轉移的影響。
結果:GAS7C overexpression 並無明顯改變細胞週期的分佈;但 GAS7C overexpression 不僅會在細胞層次抑制肺癌細胞的移動及侵略能力,在動物模組中也同樣抑制肺癌細胞的轉移能力。深入探究其原因,我們發現 GAS7C overexpression 可能是透過減少fibronectin-integrin-FAK 路徑的相關蛋白質表現,例如:fibronectin、phosphor-FAK、phosophor-paxillin 及 Arp2/3complex 來影響 actin dynamic 而達到抑制肺癌細胞的轉移。另一方面我們想找出 GAS7C 交互作用的蛋白質 (association proteins) 並探討其影響細胞移動的作用機制,我們利用 immunoprecipitation-Western blotting 實驗確認 GAS7C 會和 fibronectin-integrin-FAK 路徑中影響 actin dynamic 的重要蛋白質 N-WASP 交互作用形成蛋白質複合體 (protein complex);另外我們的研究結果顯示,GAS7C 也會和 β-catenin 及 ubiquitin degradation 路徑相關蛋白質,例如: hnRNP-U 形成蛋白質複合體 (protein complex),當 GAS7C overexpression 時,使 β-catenin 的 ubiquitination 程度上升和 β-catenin 蛋白表現量下降,其中 β-catenin 是一個細胞間附著連接間隙 (adhesion junctions) 與細胞骨架 (actin cytoskeleton) 的重要調控因子,若β-catenin 蛋白表現量下降則癌細胞移動轉移能力下降。
結論:本研究是首篇探討 GAS7 基因在肺癌癌化過程中的變異機制,並且也是首篇發現 GAS7C overexpression 可能會透過減少 fibronectin-integrin-FAK 路徑蛋白質表現及影響 actin dynamic 而達到抑制肺癌細胞的轉移,同時本篇研究也利用 immunoprecipitation-Western blotting 方法找出 GAS7 可能的交互作用蛋白,並且發現 GAS7C 除了會和影響 actin dynamic 的重要調控蛋白 N-WASP 具有交互作用外,也和 ubiquitin degradation 路徑相關蛋白質具有交互作用並使得 β-catenin 蛋白表現下降,顯示了GAS7C overexpression 可能會透過降低fibronectin-integrin-FAK訊息傳遞路徑及增加β-TrCP/β-catenin蛋白形成而達到抑制肺癌細胞移動轉移的能力。本篇研究可做為日後肺癌診斷分子標誌 (bio-markers) 的參考並且提供了日後肺癌基因標靶治療的新方向。
ABSTRACT
Aim: GAS7 is a member of growth-arrest-specific (GAS) gene family. Our previous study identified the chromosome 17p13.1, which harbors the GAS7 gene, as a high deletion region in lung cancer patients. In addition, the frequencies of low GAS7 mRNA and protein expression were 45.1% and 57.3%, respectively. Therefore, the present study aims to investigate the function of GAS7 gene and to study what the molecular mechanism of GAS7 alteration is in lung tumorigenesis.
Materials and Methods: We overexpressed GAS7C in lung cancer cells lines to evaluate the changes of cell cycle distribution and cell migration ability by FACS, wound healing assay, transwell-migration assay, and invasion assay. In addition, tail-vein experimental metastasis assay using GAS7C overexpression cells was examined in animal model. Results: The results indicated that GAS7C overexpression did not alter the cell cycle distribution, but decreased the lung cancer cells migration and invasion abilities both in vitro and in vivo. Immunoprecipitation-Western blotting was performed to further identify GAS7 association proteins. The results showed that GAS7C interacted with N-WASP, which is a key regulator in actin dynamic via fibronectin-integrin-FAK pathway. In addition, GAS7C interacted with β-catenin and ubiquitin-degradation pathway proteins such as hnRNP-U. Overexpression of GAS7C increased β-catenin ubiquitination level, thus decreased the β-catenin protein level. Collectively, these data suggested that GAS7C overexpression decreases the lung cancer cells migration may partly through its association proteins via fibronectin/integrin/FAK/N-WASP/actin dynamic pathway and hnRNP-U/β-TrCP/β-catenin ubiquitin-degradation pathway.
Conclusion: This is the first study to investigate the function of GAS7 gene and its alteration mechanisms in lung tumorigenesis. We demonstrated that GAS7C overexpression decreases lung cancer cells migration ability both in vivo and in vitro which may reduce the fibronectin-integrin-FAK pathway protein expression and increase protein complex formation of β-TrCP/β-catenin. This study provides new evidence that GAS7C may be used as a prediction biomarker or the target for gene therapy of lung cancer.
Akiyama, S.K., Olden, K., and Yamada, K.M. (1995). Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev 14, 173-189.
Bednarek, A.K., Laflin, K.J., Daniel, R.L., Liao, Q., Hawkins, K.A., and Aldaz, C.M. (2000). WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60, 2140-2145.
Beier, U.H., Holtmeier, C., Weise, J.B., and Gorogh, T. (2007). Fibronectin suppression in head and neck cancers, inflammatory tissues and the molecular mechanisms potentially involved. Int J Oncol 30, 621-629.
Benetti, R., Del Sal, G., Monte, M., Paroni, G., Brancolini, C., and Schneider, C. (2001). The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO J 20, 2702-2714.
Bompard, G., and Caron, E. (2004). Regulation of WASP/WAVE proteins: making a long story short. J Cell Biol 166, 957-962.
Cazorla, M., Hernandez, L., Fernandez, P.L., Fabra, A., Peinado, M.A., Dasenbrock, C., Tillmann, T., Kamino, K., Campo, E., Kohler, M., Morawieltz, G., Cardesa, A., Tomatis, L., and Mohr, U. (1998). Ki-ras gene mutations and absence of p53 gene mutations in spontaneous and urethane-induced early lung lesions in CBA/J mice. Mol Carcinog 21, 251-260.
Chang, P.Y., Kuo, J.T., Lin-Chao, S., and Chao, C.C. (2005). Identification of rat Gas7 isoforms differentially expressed in brain and regulated following kainate-induced neuronal injury. J Neurosci Res 79, 788-797.
Chao, C.C., Chang, P.Y., and Lu, H.H. (2005). Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth. J Neurosci Res 81, 153-162.
Chao, C.C., Su, L.J., Sun, N.K., Ju, Y.T., Lih, J.C., and Lin-Chao, S. (2003). Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells. J Neurosci Res 74, 248-254.
Chen, J.T., Chen, Y.C., Chen, C.Y., and Wang, Y.C. (2001). Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer 31, 163-170.
Chen, J.T., Chen, Y.C., Wang, Y.C., Tseng, R.C., Chen, C.Y., and Wang, Y.C. (2002). Alterations of the p16(ink4a) gene in resected nonsmall cell lung tumors and exfoliated cells within sputum. Int J Cancer 98, 724-731.
Danesi, R., de Braud, F., Fogli, S., de Pas, T.M., Di Paolo, A., Curigliano, G., and Del Tacca, M. (2003). Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev 55, 57-103.
Davis, M., Hatzubai, A., Andersen, J.S., Ben-Shushan, E., Fisher, G.Z., Yaron, A., Bauskin, A., Mercurio, F., Mann, M., and Ben-Neriah, Y. (2002). Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 16, 439-451.
Department of Health ( 2008). Republic of China: Health Promotion and Protection. In Public Health in Taiwan Area, Republic of China. R. O. C. Press, Taipei. pp47-50.
Dominguez-Monzon, G., Benitez, J.A., Vergara, P., Lorenzana, R., and Segovia, J. (2009). Gas1 inhibits cell proliferation and induces apoptosis of human primary gliomas in the absence of Shh. Int J Dev Neurosci 27, 305-313.
Dwyer-Nield, L.D., McQuillan, J., Hill-Baskin, A., Radcliffe, R.A., You, M., Nadeau, J.H., and Malkinson, A.M. (2010). Epistatic interactions govern chemically-induced lung tumor susceptibility and Kras mutation site in murine C57BL/6J-ChrA/J chromosome substitution strains. Int J Cancer 126, 125-132.
Ekman, C., Stenhoff, J., and Dahlback, B. (2010). Gas6 is complexed to the soluble tyrosine kinase receptor Axl in human blood. J Thromb Haemost 8, 838-844.
Fisher, G.H., Wellen, S.L., Klimstra, D., Lenczowski, J.M., Tichelaar, J.W., Lizak, M.J., Whitsett, J.A., Koretsky, A., and Varmus, H.E. (2001). Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15, 3249-3262.
Fuchs, S.Y. (2002). The role of ubiquitin-proteasome pathway in oncogenic signaling. Cancer Biol Ther 1, 337-341.
Fuchs, S.Y., Spiegelman, V.S., and Kumar, K.G. (2004). The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23, 2028-2036.
Gressani, K.M., Leone-Kabler, S., O'Sullivan, M.G., Case, L.D., Malkinson, A.M., and Miller, M.S. (1999). Strain-dependent lung tumor formation in mice transplacentally exposed to 3-methylcholanthrene and post-natally exposed to butylated hydroxytoluene. Carcinogenesis 20, 2159-2165.
Han, S., Khuri, F.R., and Roman, J. (2006). Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66, 315-323.
Harburger, D.S., and Calderwood, D.A. (2009). Integrin signalling at a glance. J Cell Sci 122, 159-163.
Heath, R.J., and Insall, R.H. (2008). F-BAR domains: multifunctional regulators of membrane curvature. J Cell Sci 121, 1951-1954.
Hecht, S.S., Chen, C.B., Hirota, N., Ornaf, R.M., Tso, T.C., and Hoffmann, D. (1978). Tobacco-specific nitrosamines: formation from nicotine in vitro and during tobacco curing and carcinogenicity in strain A mice. J Natl Cancer Inst 60, 819-824.
Hollander, M.C., Balogh, A.R., Liwanag, J., Han, W., Linnoila, R.I., Anver, M.R., and Dennis, P.A. (2008). Strain-specific spontaneous and NNK-mediated tumorigenesis in Pten+/- mice. Neoplasia 10, 866-872.
Howard, J.C., Varallo, V.M., Ross, D.C., Roth, J.H., Faber, K.J., Alman, B., and Gan, B.S. (2003). Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro. BMC Musculoskelet Disord 4, 16.
Ilsley, J.L., Sudol, M., and Winder, S.J. (2002). The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal 14, 183-189.
Ingham, R.J., Colwill, K., Howard, C., Dettwiler, S., Lim, C.S., Yu, J., Hersi, K., Raaijmakers, J., Gish, G., Mbamalu, G., Taylor, L., Yeung, B., Vassilovski, G., Amin, M., Chen, F., Matskova, L., Winberg, G., Ernberg, I., Linding, R., O'Donnell, P., Starostine, A., Keller, W., Metalnikov, P., Stark, C., and Pawson, T. (2005). WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 25, 7092-7106.
Ingham, R.J., Gish, G., and Pawson, T. (2004). The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23, 1972-1984.
Innocenti, M., Gerboth, S., Rottner, K., Lai, F.P., Hertzog, M., Stradal, T.E., Frittoli, E., Didry, D., Polo, S., Disanza, A., Benesch, S., Di Fiore, P.P., Carlier, M.F., and Scita, G. (2005). Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nat Cell Biol 7, 969-976.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer J Clin 58, 71-96.
Jennings-Gee, J.E., Moore, J.E., Xu, M., Dance, S.T., Kock, N.D., McCoy, T.P., Carr, J.J., and Miller, M.S. (2006). Strain-specific induction of murine lung tumors following in utero exposure to 3-methylcholanthrene. Mol Carcinog 45, 676-684.
Joazeiro, C.A., and Weissman, A.M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552.
Johnson, L., Mercer, K., Greenbaum, D., Bronson, R.T., Crowley, D., Tuveson, D.A., and Jacks, T. (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111-1116.
Ju, Y.T., Chang, A.C., She, B.R., Tsaur, M.L., Hwang, H.M., Chao, C.C., Cohen, S.N., and Lin-Chao, S. (1998). gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci U S A 95, 11423-11428.
Kurtz, A., and Zimmer, A. (1995). Interspecies fluorescence in situ hybridization further defines synteny homology between mouse chromosome 11 and human chromosome 17. Mamm Genome 6, 379-380.
Lazakovitch, E.M., She, B.R., Lien, C.L., Woo, W.M., Ju, Y.T., and Lin-Chao, S. (1999). The Gas7 gene encodes two protein isoforms differentially expressed within the brain. Genomics 61, 298-306.
Le Clainche, C., Schlaepfer, D., Ferrari, A., Klingauf, M., Grohmanova, K., Veligodskiy, A., Didry, D., Le, D., Egile, C., Carlier, M.F., and Kroschewski, R. (2007). IQGAP1 stimulates actin assembly through the N-WASP-Arp2/3 pathway. J Biol Chem 282, 426-435.
Li, J., Kleeff, J., Esposito, I., Kayed, H., Felix, K., Giese, T., Buchler, M.W., and Friess, H. (2005). Expression analysis of PMP22/Gas3 in premalignant and malignant pancreatic lesions. J Histochem Cytochem 53, 885-893.
Lih, C.J., Cohen, S.N., Wang, C., and Lin-Chao, S. (1996). The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene. Proc Natl Acad Sci U S A 93, 4617-4622.
Lim, J.I., Sabouri-Ghomi, M., Machacek, M., Waterman, C.M., and Danuser, G. (2010). Protrusion and actin assembly are coupled to the organization of lamellar contractile structures. Exp Cell Res 316, 2027-2041.
Linder, C.C. (2006). Genetic variables that influence phenotype. Ilar J 47, 132-140.
Liou, Y.C., Sun, A., Ryo, A., Zhou, X.Z., Yu, Z.X., Huang, H.K., Uchida, T., Bronson, R., Bing, G., Li, X., Hunter, T., and Lu, K.P. (2003). Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556-561.
Lortie, K., Huang, D., Chakravarthy, B., Comas, T., Hou, S.T., Lin-Chao, S., and Morley, P. (2005). The gas7 protein potentiates NGF-mediated differentiation of PC12 cells. Brain Res 1036, 27-34.
Lu, Y.L., Wang, Y.C., and Lee-Cehn, G.J. (2008). Molecular alteration analysis of GAS7 gene and its clinical significance in lung cancer. Master thesis, National Taiwan Normal University.
Megonigal, M.D., Cheung, N.K., Rappaport, E.F., Nowell, P.C., Wilson, R.B., Jones, D.H., Addya, K., Leonard, D.G., Kushner, B.H., Williams, T.M., Lange, B.J., and Felix, C.A. (2000). Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc Natl Acad Sci U S A 97, 2814-2819.
Miller, Y.E., Dwyer-Nield, L.D., Keith, R.L., Le, M., Franklin, W.A., and Malkinson, A.M. (2003). Induction of a high incidence of lung tumors in C57BL/6 mice with multiple ethyl carbamate injections. Cancer Lett 198, 139-144.
Moorthy, P.P., Kumar, A.A., and Devaraj, H. (2005). Expression of the Gas7 gene and Oct4 in embryonic stem cells of mice. Stem Cells Dev 14, 664-670.
Mourtada-Maarabouni, M., Hedge, V.L., Kirkham, L., Farzaneh, F., and Williams, G.T. (2008). Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci 121, 939-946.
Mourtada-Maarabouni, M., Pickard, M.R., Hedge, V.L., Farzaneh, F., and Williams, G.T. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195-208.
Nishimura, N., Araki, K., Shinahara, W., Nakano, Y., Nishimura, K., Higashio, H., and Sasaki, T. (2008). Interaction of Rab3B with microtubule-binding protein Gas8 in NIH 3T3 cells. Arch Biochem Biophys 474, 136-142.
Olson, M.F., and Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26, 273-287.
Pamonsinlapatham, P., Hadj-Slimane, R., Lepelletier, Y., Allain, B., Toccafondi, M., Garbay, C., and Raynaud, F. (2009). P120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling. Biochimie 91, 320-328.
Pinol-Roma, S., and Dreyfuss, G. (1993). hnRNP proteins: localization and transport between the nucleus and the cytoplasm. Trends Cell Biol 3, 151-155.
Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
Rohatgi, R., Ho, H.Y., and Kirschner, M.W. (2000). Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150, 1299-1310.
Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., and Kirschner, M.W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221-231.
Rohatgi, R., Nollau, P., Ho, H.Y., Kirschner, M.W., and Mayer, B.J. (2001). Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276, 26448-26452.
Ryan, J., Barker, P.E., Nesbitt, M.N., and Ruddle, F.H. (1987). KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J Natl Cancer Inst 79, 1351-1357.
Samet, J.M. (2004). Environmental causes of lung cancer: what do we know in 2003? Chest 125, 80S-83S.
Sasaki, M., Sugio, K., Kuwabara, Y., Koga, H., Nakagawa, M., Chen, T., Kaneko, K., Hayashi, K., Shioyama, Y., Sakai, S., and Honda, H. (2003). Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med 17, 189-196.
Schneider, C., King, R.M., and Philipson, L. (1988). Genes specifically expressed at growth arrest of mammalian cells. Cell 54, 787-793.
Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.
Sgorbissa, A., Benetti, R., Marzinotto, S., Schneider, C., and Brancolini, C. (1999). Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis. J Cell Sci 112 ( Pt 23), 4475-4482.
She, B.R., Liou, G.G., and Lin-Chao, S. (2002). Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 273, 34-44.
She, Q.B., Chen, N., and Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275, 20444-20449.
Shiozawa, Y., Pedersen, E.A., Patel, L.R., Ziegler, A.M., Havens, A.M., Jung, Y., Wang, J., Zalucha, S., Loberg, R.D., Pienta, K.J., and Taichman, R.S. (2010). GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116-127.
Smith, C.M., and Steitz, J.A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18, 6897-6909.
Sozzi, G., Pastorino, U., Moiraghi, L., Tagliabue, E., Pezzella, F., Ghirelli, C., Tornielli, S., Sard, L., Huebner, K., Pierotti, M.A., Croce, C.M., and Pilotti, S. (1998). Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 58, 5032-5037.
Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J., and Rotin, D. (1996). WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15, 2371-2380.
Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D., Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat, N.K., Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A.A., Rubin, G.M., Hong, L., Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant, T.L., Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S.S., Loquellano, N.A., Peters, G.J., Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J., McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S., Worley, K.C., Hale, S., Garcia, A.M., Gay, L.J., Hulyk, S.W., Villalon, D.K., Muzny, D.M., Sodergren, E.J., Lu, X., Gibbs, R.A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madan, A., Young, A.C., Shevchenko, Y., Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D., Dickson, M.C., Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M., Butterfield, Y.S., Krzywinski, M.I., Skalska, U., Smailus, D.E., Schnerch, A., Schein, J.E., Jones, S.J., and Marra, M.A. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99, 16899-16903.
Sudol, M., Sliwa, K., and Russo, T. (2001). Functions of WW domains in the nucleus. FEBS Lett 490, 190-195.
Tseng, R.C., Chang, J.W., Hsien, F.J., Chang, Y.H., Hsiao, C.F., Chen, J.T., Chen, C.Y., Jou, Y.S., and Wang, Y.C. (2005). Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 117, 241-247.
Tuveson, D.A., and Jacks, T. (1999). Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18, 5318-5324.
Van Bree, C., Rodermond, H.M., ten Cate, R., de Vos, J., Stalpers, L.J., Haveman, J., Medema, J.P., and Franken, N.A. (2008). G0 cell cycle arrest alone is insufficient for enabling the repair of ionizing radiation-induced potentially lethal damage. Radiat Res 170, 184-191.
Wang, Q., Symes, A.J., Kane, C.A., Freeman, A., Nariculam, J., Munson, P., Thrasivoulou, C., Masters, J.R., and Ahmed, A. (2010). A novel role for wnt/ca signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS One 5, e10456.
Wang, Y.C., Chen, C.Y., Chen, S.K., Cherng, S.H., Ho, W.L., and Lee, H. (1998a). High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan. Cancer Res 58, 328-333.
Wang, Y.C., Lee, H.S., Chen, S.K., Yang, S.C., and Chen, C.Y. (1998b). Analysis of K-ras gene mutations in lung carcinomas: correlation with gender, histological subtypes, and clinical outcome. J Cancer Res Clin Oncol 124, 517-522.
Wang, Y.C., Lu, Y.P., Tseng, R.C., Lin, R.K., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111, 887-895.
Weissman, A.M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2, 169-178.
Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V., and Lu, K.P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20, 3459-3472.
Yamaguchi, H., Miki, H., Suetsugu, S., Ma, L., Kirschner, M.W., and Takenawa, T. (2000). Two tandem verprolin homology domains are necessary for a strong activation of Arp2/3 complex-induced actin polymerization and induction of microspike formation by N-WASP. Proc Natl Acad Sci U S A 97, 12631-12636.
Yendamuri, S., Kuroki, T., Trapasso, F., Henry, A.C., Dumon, K.R., Huebner, K., Williams, N.N., Kaiser, L.R., and Croce, C.M. (2003). WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res 63, 878-881.
You, J.J., and Lin-Chao, S. (2010). Gas7 functions with N-wasp to regulate the neurite outgrowth of hippocampal neurons. J Biol Chem 285, 11652-11666.
Zhou, J., Dudley, M.E., Rosenberg, S.A., and Robbins, P.F. (2005). Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28, 53-62.