| 研究生: |
黃孝仁 Huang, Siao-Ren |
|---|---|
| 論文名稱: |
以螯合型高分子模板製備聚苯胺 Studies on the preparation of polyaniline by the chelated polymer templates |
| 指導教授: |
陳志勇
Chen, Chi-Yong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 螯合型高分子 、高分子基板 、聚苯胺 、防腐蝕 |
| 外文關鍵詞: | chelating groups, polymer template, polyaniline (PANi) |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以亞胺乙二酸 (IDA) 和縮水甘油甲基丙烯酸酯 (GMA) 反應得到側鏈具螯合官能基的乙烯系單體,簡稱 GMA-IDA。將 GMA-IDA 與丙烯酸甲酯 (MA) 及甲基丙烯酸甲酯 (MMA) 進行無乳化劑乳化共聚合法反應製備得到 Poly (MA-co-MMA-co-GMA-IDA) (PMMG) 高分子乳液,再將乳液成膜製得高分子 PMMG 薄膜基板。PMMG 薄膜螯合 Fe3+ 離子後,以二次水清洗薄膜上未螯合金屬離子,放入苯胺鹽酸水溶液中反應製備得到 PMMG-PANi,由 SEM 與TEM 分析中可以發現反應 10 mins 內有聚苯胺奈米顆粒生成,大小從 13 nm 變大到 55 nm,1 hr 後局部有條狀聚苯胺產生,反應 12 hr 後薄膜表面上有厚度約 2.5-3 μm 的條狀聚苯胺。不同 pH 值成膜對生長聚苯胺影響,pH =3.3 下薄膜表面有較均勻厚度的聚苯胺生成,表面電阻 6.75x103(ohm/sq)。改變高分子薄膜中 GMA-IDA 的比例, 提高比例從 3.00%到 5.84 % 可以進一步降低表面電阻到 4.12x103(ohm/sq)。
另一方面將 苯乙烯 (Styrene) 及 GMA-IDA 單體進行無乳化劑乳化共聚合反應製備粒徑約 84 nm 之高分子乳液基板 poly(Styrene-co-GMA-IDA) (PSG),將 PSG 基板螯合 Fe3+ 離子後,放入苯胺鹽酸水溶液中反應製備得到 PSG-PANi。探討不同苯胺反應濃度、GMA-IDA 於乳液顆粒表面的濃度對聚苯胺的生長影響。在 0.1M 苯胺單體濃度下乳液顆粒上會有 13 nm 大小的聚苯胺生成,隨著單體濃度提高到 1.0M,乳液顆粒逐漸從 84 nm 變大到 184 nm,用酸摻雜後導電度為1.83x10-4(S/cm)。並將 PSG-PANi進行防腐蝕應用,腐蝕電位阻抗 epoxy + PSG > epoxy > steel,添加聚苯胺後可以提高腐蝕電阻,即提高防鏽蝕能力。
A simple synthetic route for the preparation of polyaniline (PANi) is disclosed. The method comprises providing chelating group-containing polymer templates, and producing nanowires or nanoparticles on the surface of said polymer templates. This approach is suitable for those that can be prepared from the reduction of an appropriate metal ion-polymer complex.
The polymer templates PMMG films were prepared by soap-free emulsion copolymerization of MA, MMA and GMA-IDA. GMA-IDA chelating groups within the copolymer were the coordination sites for chelating Fe3+, at which nanowires PANi were grown ion the templates. The size and morphology of PANi were observed by SEM and TEM. By the observations demonstrates that the mean diameters of PANi nanoparticales grown from 13 nm to 55 nm between 10 mins reaction time.After 12 hrs reaction time, there were nanowires PANi on the templates with thickness 2.5-3 μm. And there were uniform nanowires PANi on he templates at pH=3.3 preparation of PMMG film condition. Then increased the ratio of GMA-IDA in the PMMG films from 3.00% to 5.84 %,the conductivity of PMMG-PANi is from 6.75x103(ohm/sq) to 4.12x103(ohm/sq).
The PSG latex was prepared by the soap-free emulsion copolymerization of styrene and GMA-IDA. The PSG microsphere templates were be used to chelating metal ions, at which PANi particles were grown. The size and morphology of PANi were observed by SEM and were influenced by the amount of iminodiacetic acid group on the surface of the copolymer microsphere and the concentration of aniline. There were 13 nm PANi nanoparticles on the surface of the copolymer microsphere at 0.1M anline reacted condition. And the PSG-PANi particle grown from 84 nm to 183 nm with the higher 1.0 M anline reacted condition.
1. Ramakrishnan Harihanan, Ph. D. Dissertation, Chemistry
Department, Drexel University. (1994)
2. A. F. Diaz, J. Bargon in Handbook of Conducting Polymer, T. A.Skotherim Ed.; Marcel Decker: Vol. 1, 82. New York, (1986)
3. D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, J. Chem.Soc., Faraday Trans. 294, 60 (1964)
4. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Ching, A. J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977)
5. L. Zheng, R. C. Urian, Chem. Mater., 12, 13-15, (2000)
6. T. Osaka, S. Komada, K. Fujihana, N. Okamoto, N. Kaneko, J.Electrochem. Soc., 114, 743, (1997)
7. P. Roncal, J. Chem. Rev., 92, 711, (1992)
8. R. B. Seymour, Conductive polymer, 23-28, (1981)
9. H. Letheby, J. Chem. Soc., 15, 161, (1862)
10. A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans., 97, 2388, (1910)
11. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L.Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 121, 173, (1985)
12. H. Li, J. Wang, S. Wang, J. Power Sources, 190, 578-589, (2009)
13. D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc.,84, 3618, (1962)
14. H. Zhang, J. Wang, Macromol. Rapid Commun., 29, 68-73, (2008)
15. Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer, 30, 2305-2310, (1989)
16. A. Yasuda, T. Shimidzu, Polymer, 25, 329-338, (1993)
17. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 121, 173, (1985)
18.Y. J. He, React. Funcct. Polym. 67, 476, (2007)
19. C. R. Martin, Chem. Mater, 8, 1739, (1996)
20. C. G. Wu, T. Bein, Science, 264, 1757, (1994)
21. A. D. W. Carswell, B. P. Grandy, J. Am. Chem. Soc., 125, 14793, (2003)
22. J. Huang, R. B. Kaner, J. Am. Chem. Soc., 125, 314, (2003)
23. P. S. Rao, S. Subrahmanya, Synth. Met., 128, 311, (2002)
24. H. Qiu, J. Zhai, Adv. Funct. Mater., 12, 925, (2003)
25.Y. Ma, J. Am. Chem. Soc., 126, 7097-7101, (2004)
27. Y. Zhu, Macromol. Chem. Phys. 210, 2046-2051, (2009)
28. J. Wang, Macromol. Rapid Commun. 30, (2009)
29. E. C. Chen, Polymer Degradation and Stability, 94, 500-557, (2009)
30. H. Zhang, Synthetic Metal, 159, 277-281, (2009)
31. 朱遠志,成功大學化學工程學系博士論文,民國94年
32. 陳志彥,成功大學化學工程學系博士論文,民國91年
33. C. J. King, “Seperation Processes” 2nd ed. New York: Mc Graw-Hill, 1st , 115, (1980)
34. B. S. Kim, Carbohyd. Polym., 39, 217-223, (1999)
35. C. Kantipuly, Talanta, 37, 491-517, (1990)
36. R. A. Beauvias, React. Funct. Polym., 36, 113-123, (1998)
37. F. Ciardelli, “Marcomolecule-Metal Complexes” Berlin: Springer, 2nd, 412, (1996)
38. C. C. Wang, C. C. Chang, C. Y. Chen, Marcromol. Chem. Phys., 202, 882, (2001)
39. C. C. Wang, C. Y. Chen, J. Appl. Polym. Sci., 84, 1353, (2002)
40. C. C. Wang, C. Y. Chen, C. C. Huang, J. Member. Sci., 208, 133, (2002)
41. C. C. Wang, W. S. Li, C. Y. Chen, J. Appl. Polym. Sci., 82, 3248, (2001)
42. C. C. Wang, H. G. Chen, C. Y. Chen, Polym. Adv. Technol., 14, 349, (2003)
43. W. H. Hou, C. Y. Chen, C. C. Wang, Polymer, 44, 2983, (2003)
44. W. H. Hou, C. Y. Chen, C. C. Wang, Y. H. Huang, Electrochim Acta, 48, 679, (2003)
45. W. H. Hou, C. Y. Chen, C. C. Wang, Solid State Ion, 166, 397, (2004)
46. W. H. Hou, C. Y. Chen, C. C. Wang, Electrochim Acta, 49, 2105, (2004)
49. Y. C. Chu, C. C. Wang, C. Y. Chen, Nanotechnology, 16, 58, (2005)
50. Y. C. Chu, C. C. Wang, C. Y. Chen, J. Member. Sci., 247, 201, (2005)
51. Y. C. Chu, C. C. Wang, Y. H. Huang, C. Y. Chen, Nanotechnology, 16, 376, (2005)
52. K.Saravanan, Progress in Organic Coatings, 59, 160-167, (2007)
53. 林佳枚,成功大學材料科學與工程學系碩士論文,民國92年
校內:2020-12-31公開