簡易檢索 / 詳目顯示

研究生: 沈冠宏
SHEN, GUAN-HONG
論文名稱: 以水熱法成長氧化鋅奈米線於電子元件之應用
The Growth of Zinc Oxide Nanowires by Hydrothermal Method for Electronic Device Applications
指導教授: 洪昭南
HONG, ZHAO-NAN
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 159
中文關鍵詞: 氧化鋅水熱法奈米線電晶體
外文關鍵詞: zinc oxide, hydrothermal method, nanowires, transistor
相關次數: 點閱:105下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩大主軸,第一部分將討以水熱法的方式,於電晶體的源極和汲極間成長氧化鋅奈米線,並利用這些奈米線作為傳輸載子的主動層,完成電晶體的製作與量測該元件的電特性。研究中藉由不同的材料做為成長氧化鋅的晶種層,觀察氧化鋅奈米線於其上成長之情形。由於本研究所採用的是底部閘極(Bottom gate)的元件結構,因此成長於源極或汲極頂部的奈米線,不僅無法形成有效的載子傳輸通道,同時也不易受到底部閘極的控制,進而影響到電晶體的開關等特性。為了改善上述的現象,透過外力施壓的方式去除多餘的奈米線,或是於電極頂部的表面覆蓋一層阻擋奈米線成長的材料,以降低無法形成有效通道的奈米線數量,藉此改善元件的漏電流與電特性。此外,當奈米線與閘極絕緣層間的間隙愈小時,可提升閘極對奈米線通道開關的控制能力。因此在成長氧化鋅奈米線時,藉由降低前驅物的濃度,控制奈米線的數量與成長的方向,以達到奈米線緊貼於基板表面成長的結果,同時也提升電晶體元件的轉換及輸出特性。
    此外,由於氧化鋅奈米線對環境氣氛的變化相當敏感,尤其是當吸附氧氣或水氣時,會造成奈米線本身的阻抗改變,導致元件特性的偏移。因此,在本篇論文中利用氧電漿和熱退火等方式,對元件進行處理,藉此改變奈米線表面吸附氣體的情形,並觀察對元件特性的影響。同時,為了觀察氧化鋅奈米線電晶體在長時間操作下的穩定性,在奈米線電晶體的表面沉積 Spin on glass(SOG)或環氧樹脂(Epoxy)達到表面鈍化的目的,以改善奈米線因吸附氣體而導致元件特性偏移的現象。

    本論文的第二部份,為利用焦耳熱改善元件特性之討論。主要是根據在同一個串聯電路中,若施加一固定電壓的條件下,其流經各元件的電流應都相同。又因功率等於電流平方乘以電阻,所以元件中電阻越大的地方,其被施加的功率也越大,導致產生較多的熱。因此在本研究中將利用產生之焦耳熱來達到退火的目的,藉此改善元件之特性。在本研究中利用光微影技術製備鋁電極,再利用介電泳方式排列氧化鋅奈米線於電極上,隨後經熱壓處理以降低其接觸電阻,並於不同環境下(氮氣、空氣和 Epoxy 封裝後)在汲極施加偏壓探討其影響,且利用焦耳熱處理的過程中並不會使元件的溫度明顯提升,因此本製程將可在可撓曲基板或塑膠等不耐高溫的基板上進行電晶體製作及特性改善。

    This dissertation mainly consist of two parts. The first part investigates growth of zinc oxide nanowires (ZnO NWs) by hydrothermal method; followed by characterization and application of these ZnO NWs as carrier transport layer between source and drain electrode in a transistor device. Different materials are used for the ZnO NWs nucleation layer which result in different growth conditions of the ZnO NWs. This research also found that low concentration precursor suppressed the number of ZnO NWs and affected its growth orientation, which also significantly improved the device switching characteristics. The ZnO NWs surface can absorb oxygen from the atmosphere which result in impedance change of the ZnO NWs carrier transport channel. The later part of this dissertation discuss about the improvement of transistor characteristics by Joule heating. The ZnO NWs are electrophoretically deposited between the aluminum electrodes. Then, the ZnO NWs were pressed on an elevated temperatures. Lastly, the local Joule heating effect was generated by applying bias voltage on the drain electrode under nitrogen atmosphere and epoxy passivation, which minimized the contact resistance within the device. No temperature rise was observed during the heating process, thereby open a possibility of device fabrication on flexible or plastic substrate.

    目錄 第一章 緒論 1 1-1 前言 1 1-2 奈米材料與元件之發展與潛力 4 1-3 奈米元件之發展現況 7 1-4 研究動機 9 第二章 理論基礎與文獻回顧 11 2-1 氧化鋅的結構特性與應用 11 2-2 一維奈米線成長之方法與機制 15 2-3 水熱法成長氧化鋅奈米線之機制 18 2-4 電晶體簡介 23 2-5 電晶體的工作原理 25 2-5-1 兩端特性 25 2-5-2 三端特性 25 2-5-3 載子遷移率(Carrier Mobility) 26 2-5-4 臨界電壓值(Threshold voltage, Vth) 28 2-5-5 轉移電導值(Transconductance, gm) 28 2-5-6 次起始擺幅(Substhreshold swing, S) 29 2-6 奈米線電晶體研究近況 29 2-6-1 平面型(Planar)奈米線場效電晶體 31 2-6-2 多層堆疊奈米線電晶體 38 2-6-3 核 / 殼(Core / Shell)奈米線電晶體 40 2-6-4 環繞式閘極(Surrounding Gate)奈米線電晶體 42 2-7 側向成長氧化鋅奈米線陣 46 第三章 實驗方法與步驟 53 3-1 實驗流程 53 3-2 實驗設備 53 3-2-1 光罩對準機(Mask Aligner) 53 3-2-2 電漿濺鍍系統(Plasma Sputter) 56 3-2-3 電子束蒸鍍機(Electron-beam Evaporation) 57 3-2-4 介電泳電源供應器 58 3-2-5 壓印機 59 3-3 實驗材料 60 3-3-1 基板材料 60 3-3-2 實驗藥品 60 3-3-3 金屬材料 61 3-3-4 基板清洗溶劑及實驗氣體 61 3-4 實驗步驟 61 3-4-1 水熱法製作側向成長氧化鋅奈米線電晶體 62 3-4-2 利用焦耳熱以改善奈米線電晶體之特性 63 3-5 實驗結果分析儀器 65 3-5-1 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 65 3-5-2 能量散佈分析儀(Energy Dispersive X-Ray Spectroscopy) 67 3-5-3 穿透式電子顯微鏡(Transmission Electron Microscopy) 68 3-5-4 X光繞射分析儀(X-ray Diffraction, XRD) 70 3-5-5 電性量測系統 71 第四章 結果與討論 73 4-1 以水熱法製備氧化鋅奈米線電晶體 73 4-1-1 負型光阻 / 銀 / 鈦電極之基板側向成長氧化鋅奈米線 73 4-1-2 銀 / 鈦電極之基板側向成長氧化鋅奈米線 82 4-1-3 鋅電極之側向成長氧化鋅奈米線 85 4-1-4 鈦 / 鋅電極之基板側向成長氧化鋅奈米線 94 4-1-5 氧化鋅奈米線品質之探討 101 4-1-6 白金 / 鈦 / 氧化鋅電極之基板側向成長氧化鋅奈米線 108 4-1-7 細氧化鋅奈米線電晶體 115 4-1-8 氧化鋅奈米線電晶體表面進行氧電漿處理 120 4-1-9 簡化電極圖案 122 4-1-10 ZnO NWs元件於氧氣環境下進行高溫熱退火處理 128 4-1-11 元件表面進行鈍化處理 130 4-2 利用焦耳熱改善奈米線電晶體元件之特性 134 4-2-1 在汲極施加偏壓對於元件特性的影響 134 4-2-2 披覆鈍化層後對焦耳熱改善元件特性的影響 138 4-2-3 在汲極施加偏壓的過程中通氮氣對元件特性的影響 141 第五章 結論 143 參考文獻 146

    [1] D.M.Eigler, E.K.Schweizer, “Positioning single atoms with a
    Scanning tunnelling Microscope”, Nature, Vol. 344, pp. 524–526
    (1990)
    [2] Crommie MF, Lutz CP, Eigler DM, “Confinement of electrons to quantum corrals on a metal surface”, Science, Vol. 262, No. 5131, pp.218-220 (1993)
    [3] Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronics, Vol. 38, pp.114-117 (1965)
    [4] “In Situ Real-time Atomic Scale Nanostructural Synthesis, Characterization and Modeling”, Arizona state university (2007), available from: http://www.asu.edu/clas/csss/NUE/index.html
    [5] Wei Lu, Ping Xie, and Charles M. Lieber, “Nanowire transistor performance limits and applications”, Journal IEEE Transactions on Electron Devices, Vol. 55, No. 11, pp. 2859-2876 (2008)
    [6] Fang Qian, Silvija Gradecak, Yat Li, Cheng-Yen Wen, and Charles M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Letters, Vol. 5, No. 11, pp. 2287-2291 (2005)
    [7] M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review", Semiconductor Science and Technology, Vol. 25, pp. 024001 (2010)
    [8] Tian B, Kempa TJ, and Lieber CM, “Single nanowire photovoltaics”, Chemical Society Reviews, Vol. 38, pp. 16-24 (2009)
    [9] Erik C. Garnett, Mark L. Brongersma, Yi Cui, and Michael D. McGehee, “Nanowire solar cells”, Annual Review of Materials Research, Vol. 41, pp. 269-295(2011)
    [10] V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh,
    I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J.
    Dawson, M. Beaux, C. Berven, “Principles and mechanisms of gas
    sensing by GaN nanowires functionalized with gold nanoparticles”,
    Journal of Applied Physics, vol. 99, pp. 104302 (2006)
    [11] Adam K. Wanekaya, Wilfred Chen, Nosang V. Myung, and Ashok Mulchandani, “Nanowire-based electrochemical biosensors”, Electroanalysis, Vol. 18, pp. 533-550 (2006)
    [12] R A Powell, W E Spicer, and J C McMenamin, “Photoemission Studies of Wurtzite Zinc Oxide”, Phys. Rev. B, Vol. 6, No. 8, pp. 3056(1972)
    [13] D M Hofmann, A Hofstaetter, F Leiter, H Zhou, F Henecker, B K
    Meyer, S B Orlinskii, J Schmidt, P G Baranov, “Hydrogen: a
    relevant shallow donor in zinc oxide”, Physical Review Letters. vol.
    88, No. 4, pp. 045504 (2002)
    [14] E G Bylander, “Surface effects on the low-energy
    cathodoluminescence of zinc oxide”, Journal of Applied Physics,
    Vol. 49, pp. 1188 (1978)
    [15] Y Chen, D M Bagnall, H Koh, K Park, K Hiraga, Z Zhu, T Yao,
    “Plasma assisted molecular beam epitaxy of ZnO on c -plane
    sapphire: Growth and characterization”, Journal of Applied Physics,
    Vol. 84, pp. 3912 (1998)
    [16] W.I. Park, G.‐C. Yi, M.Y. Kim, S.J. Pennycook, “Quantum
    Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures”,
    Advanced materials, Vol. 15, No. 6, pp. 526-529 (2003)
    [17] R A Powell, W E Spicer, and J C McMenamin, “Photoemission Studies of Wurtzite Zinc Oxide”, Phys. Rev. B, Vol. 6, No. 8, pp. 3056(1972)
    [18] Dawar, A. L., Jain, A. K., Jagadish, C., “Semiconducting Transparent
    Thin Films”, published by Institute of Physics Publishing (1995)
    [19] Y Xia, P Yang, Y Sun, Y Wu, B Mayer, B Gates, Y Ying, F Kim, H
    Yan, “One‐Dimensional Nanostructures: Synthesis, Characterization,
    and Applications”, Advanced materials, Vol. 15, No. 5, pp. 353-389
    (2003)
    [20] W.I. Park, G.‐C. Yi, M.Y. Kim, S.J. Pennycook, “Quantum
    Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures”,
    Advanced materials, Vol. 15, No. 6, pp. 526-529 (2003)
    [21] Zhong LinWang, “Nanostructures of zinc oxide”, Materials Today,
    Vol. 7, No. 6, pp. 26-33 (2004)
    [22] George W. Morey, “Hydrothermal Synthesis”, American Ceramic
    Society, Vol. 36, No. 9, pp. 279-285 (1953)
    [23] Tadao Sugimoto, “Preparation of monodispersed colloidal particles”,
    Advances in Colloid and Interface Science, Vol. 28, pp. 65-108
    (1987)
    [24] Vayssieres L , Keis K, Lindquist SE, Hagfeldt A, “Purpose-built
    anisotropic metal oxide material: 3D highly oriented microrod array
    of ZnO”, The Journal of Physical Chemistry - Part B, Vol. 105, No.
    17, pp. 3350-3352 (2001)
    [25] Vayssieres L, “Growth of arrayed nanorods and nanowires of ZnO
    from aqueous solutions”, Advanced materials, Vol. 15, No. 5, pp.
    464-466 (2003)
    [26] Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y,
    Saykally RJ, Yang P, “Low-temperature wafer-scale production of
    ZnO nanowire arrays”, Angewandte Chemie-International Edition,
    Vol. 42, No. 26, pp. 3031-3034 (2003)
    [27] Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai
    G, Yang P, “General route to vertical ZnO nanowire arrays using
    textured ZnO seeds”, Nano letters, Vol. 5, No. 7, pp. 1231-1236
    (2005)
    [28] Youngjo Tak, Kijung Yong, “Controlled Growth of Well-Aligned
    ZnO Nanorod Array Using a Novel Solution Method”, The Journal
    of Physical Chemistry – Part B, Vol. 109, No. 41, pp. 19263–19269
    (2005)
    [29] Cui, J. B., Daghlian, C. P., Gibson, U. J., Püsche, R., Geithner, P.,
    Ley, L., “Low-temperature growth and field emission of ZnO
    nanowire arrays”, Journal of Applied Physics, Vol. 97, No. 4, pp.
    044315-044315-7 (2005)
    [30] R B M Cross1, M M De Souza, E M Sankara Narayanan, “A low
    temperature combination method for the production of ZnO
    nanowires”, Nanotechnology, Vol. 16, No. 10, pp. 2188-2192 (2005)
    [31] Q Li, V Kumar, Y Li, H Zhang, T J Marks, R P H Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions”, Chemistry of Materials, Vol. 17, No. 5, pp. 1001-1006 (2005).
    [32] X Duan, C Niu, V Sahi, J Chen, J W Parce, S Empedocles, J L Goldman, “High-performance thin-film transistors using semiconductor nanowires and nanoribbons”, Nature, Vol. 425, No. 6955, pp. 274-278 (2003).
    [33] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, Charles M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Letters, Vol. 3, No. 2, pp. 149-152 (2003)
    [34] Song Jin, Dongmok Whang, Michael C. McAlpine, Robin S. Friedman, Yue Wu, Charles M. Lieber, “Scalable Interconnection and Integration of Nanowire Devices without Registration”, Nano Letters, Vol. 4, No. 5, pp. 915-919 (2004)
    [35] Jong-Hyun Ahn, Hoon-Sik Kim, Keon Jae Lee, Seokwoo Jeon, Seong Jun Kang, Yugang Sun, Ralph G. Nuzzo, John A. Rogers, “Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials”, Science, Vol. 314, No. 5806, pp. 1754-1757 (2006)
    [36] Ali Javey, SungWoo Nam, Robin S. Friedman, Hao Yan, Charles M. Lieber, “Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics”, Nano Letters, Vol. 7, No. 3, pp. 773-777 (2007)
    [37] Yat Li, Jie Xiang, Fang Qian, Silvija Gradečak, Yue Wu, Hao Yan, Douglas A. Blom, Charles M. Lieber, “Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors”, Nano Letters, Vol. 6, No. 7, pp. 1468-1473 (2006)
    [38] Jie Xiang, Wei Lu, Yongjie Hu, Yue Wu, Hao Yan, Charles M. Lieber, “Ge/Si nanowire heterostructures as highperformance field-effect transistors”, Nature, Vol. 441, No. 7092, pp. 489-493 (2006)
    [39] Digh Hisamoto, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, Chenming Hu, “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm”, IEEE Transactions on Electron Devices, Vol. 47, No. 12, pp. 2320-2325 (2000)
    [40] Volker Schmidt, Heike Riel, Stephan Senz, Siegfried Karg, Walter Riess, Ulrich Gösele, “Realization of a Silicon Nanowire Vertical
    Surround‐Gate Field‐Effect Transistor”, Small, Vol. 2, No. 1, pp.
    85-88 (2006)
    [41] Josh Goldberger, Allon I. Hochbaum, Rong Fan, Peidong Yang,
    “Silicon Vertically Integrated Nanowire Field Effect Transistors”,
    Nano letters, Vol. 6, No. 5, pp. 973-997 (2006)
    [42] Keem K, Jeong DY, Kim S, Lee MS, Yeo IS, Chung UI, Moon JT,
    “Fabrication and device characterization of omega-shaped-gate ZnO
    nanowire field-effect transistors”, Nano letters, Vol. 6, No. 7, pp.
    1454-1458 (2006)
    [43] Li Zhang, Ryan Tu, Hongjie Dai, “Parallel Core−Shell Metal-
    Dielectric-Semiconductor Germanium Nanowires for High-Current
    Surround-Gate Field-Effect Transistors”, Nano letters, Vol. 6, No.
    12, pp. 2785-2789 (2006)
    [44] Huang Y, Duan X, Wei Q, Lieber CM, “Directed assembly of one-
    dimensional nanostructures into functional networks”, Science, Vol.
    291, No. 5504, pp. 630-633 (2001)
    [45] Dongmok Whang, Song Jin, Yue Wu, Charles M. Lieber, “Large-
    Scale Hierarchical Organization of Nanowire Arrays for Integrated
    Nanosystems”, Nano letters, Vol. 3, No. 9, pp. 1255-1259 (2003)
    [46] Chung J, Lee KH, Lee J, Ruoff RS, “Toward large-scale integration
    of carbon nanotubes”, Langmuir, Vol. 20, No. 8, pp. 3011-3017
    (2004)
    [47] Y Zhang, A Chang, J Cao, Q Wang, W Kim, Y Li, N Morris, E
    Yenilmez, J Kong, H. Dai, “Electric-field-directed growth of aligned
    single-walled carbon nanotubes”, Applied Physics Letters, Vol. 79,
    No. 19, pp. 3155-3157 (2001)
    [48] B Nikoobakht, C A Michaels, S J Stranick, M D Vaudin, “Horizontal
    growth and in situ assembly of oriented zinc oxide nanowires”,
    Applied Physics Letters, Vol. 85, No. 15, pp. 3244-3246 (2004)
    [49] Pu-Xian Gao, Jin Liu, Brent A. Buchine, Benjamin Weintraub, Z. L.
    Wang, “Bridged ZnO nanowires across trenched electrodes”,
    Applied Physics Letters, Vol. 91, No. 14, pp. 142108 (2007)
    [50] Yong Qin, Rusen Yang, Z. L. Wang, “Growth of Horizonatal ZnO
    Nanowire Arrays on Any Substrate”, The Journal of Physical
    Chemistry – Part C, Vol. 122, No. 48, pp. 18734–18736 (2008)
    [51] Nishuang Liu, Guojia Fang, Wei Zeng, Hai Zou, Fei Cheng, Qiao Zheng, Longyan Yuan, Xiao Zou, and Xingzhong Zhao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction”, Applied Matererials & Interferfaces, Vol. 2, pp. 1973-1979 (2010)
    [52] 黃盈捷,黃淑惠,國科會南區微系統研究中心,”Mask Aligner
    SOP”
    [53] 劉博文,ULSI製程技術,第七章微影製程技術,文京圖書有限

    [54] 莊達人,VLSI 製造技術,第七章微影,高立圖書有限公司
    (2000)
    [55] Anlian Pan, Richeng Yu, Sishen Xie, Zebo Zhang, Changqing Jin, Bingsuo Zou, “ZnO flowers made up of thin nanosheets and their optical properties” Journal of Crystal Growth, Vol. 282, pp. 165-172 (2005)
    [56] Wei Bai, Xia Zhu, Ziqiang Zhu, Junhao chu, “Synthesis of zinc
    oxide nanosheet thin films and their improved field emission and
    photoluminescence properties by annealing processing”, Applied
    Surface Science, Vol. 254, pp. 6483-6488 (2008)
    [57] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y.
    Zhang, et al., “Low-Temperature Wafer-Scale Production of ZnO
    Nanowire Arrays”, Angewandte Chemie International Edition, vol.
    42, pp. 3031-3034 (2003)
    [58] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, et
    al., “Different origins of visible luminescence in ZnO nanostructures
    fabricated by the chemical and evaporation methods”, Applied
    Physics Letters, vol. 85, pp. 1601-1603 (2004)
    [59] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt,
    “Correlation between photoluminescence and oxygen vacancies in
    ZnO phosphors”, Applied Physics Letters, vol. 68, pp. 403 (1996)
    [60] A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink,
    “The Kinetics of the Radiative and Nonradiative Processes in
    Nanocrystalline ZnO Particles upon Photoexcitation”, The Journal of
    Physical Chemistry B, vol. 104, No. 8, pp. 1715-1723 (2000)
    [61] Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang,
    “Deep-level emissions influenced by O and Zn implantations in ZnO”,
    Applied Physics Letters, vol. 87, pp. 211912 (2005)
    [62] B. Lin, Z. Fu, Y. Jia, “ Green luminescent center in undoped zinc oxide
    films deposited on silicon substrates”, Applied Physics Letters, vol.
    79, No. 7, pp. 943 (2001)
    [63] D. Li, Y.H. Leung, A.B. Djurišić, Z.T. Liu, M.H. Xie, S.L. Shi, S.J.
    Xu, W.K. Chan, “ Different origins of visible luminescence in ZnO
    nanostructures fabricated by the chemical and evaporation methods”,
    Applied Physics Letters, vol. 85, No. 9, pp. 1601-1603 (2004)
    [64] N.S. Norberg, D.R. Gamelin, “Influence of surface modification on
    the luminescence of colloidal ZnO nanocrystals”, The Journal of
    Physical Chemistry B, vol. 109, No. 44, pp. 20810-20816 (2005)
    [65] H. Zhou, H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G.
    Kaczmarczyk, A. Hoffmann, “Behind the weak excitonic emission of
    ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure”, Applied
    Physics Letters, vol. 80, No. 2, pp. 210 (2002)
    [66] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling,
    C. D. Beling, et al., “Defects in ZnO Nanorods Prepared by a
    Hydrothermal Method”, The Journal of Physical Chemistry B, vol.
    110, pp. 20865-20871 (2006)
    [67] M. A. s. Verges, A. Mifsud, and C. J. Serna, “Formation of rod-like
    zinc oxide microcrystals in homogeneous solutions”, Journal of the
    Chemical Society, Faraday Transactions, vol. 86, pp. 959 (1990)
    [68] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc
    oxide films deposited on silicon substrates”, Applied Physics Letters,
    vol. 79, pp. 943-945 (2001)
    [69] W.-K. Hong, J.I. Sohn, D.-K. Hwang, S.-S. Kwon, G. Jo, S. Song,
    S.-M. Kim, H.-J. Ko, S.-J. Park, M.E. Welland, T. Lee, “Tunable
    electronic transport characteristics of surface-architecture-controlled
    ZnO nanowire field effect transistors”, Nano Letters, vol. 8, No. 3,
    pp. 950-956 (2008)
    [70] J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, C.-J. Kim, “Origin of
    threshold voltage instability in indium-gallium-zinc oxide thin film
    transistors”, Applied Physics Letters, vol. 93, No. 3, pp. 123508
    (2008)
    [71] A. Kolmakov, M. Moskovits, “Chemical sensing and
    catalysis by one-dimensional metal-oxide nanostructures”, Annual
    Review of Materials Research, vol. 34, No. 1, pp. 151 (2004)
    [72] H. Pan, N. Misra, S. Ko, C. Grigoropoulos, N. Miller, E. Haller, O.
    Dubon, “Melt-mediated coalescence of solution-deposited ZnO
    nanoparticles by excimer laser annealing for thin-film transistor
    fabrication”, Applied Physics Letters, vol. 94, No. 1, pp. 111-115
    (2008)
    [73] T. Jun, K. Song, Y. Jeong, K. Woo, D. Kim, C. Bae, J. Moon,
    “High-performance low-temperature solution-processable ZnO thin
    film transistors by microwave-assisted annealing”, Journal of
    Materials Chemistry, vol. 21, No. 4, pp. 1102-1108 (2011)
    [74] S. Saxena, K. Dong Cheol, P. Jeang Hun, J. Jin, “Polycrystalline
    Silicon Thin-Film Transistor Using Xe Flash-Lamp Annealing”,
    Electron Device Letters, vol. 31, No. 11, pp. 1242-1244 (2010)
    [75] S. Yeob Park, K. Hwan Ji, H. Yoon Jung, J.-I. Kim, R. Choi, K. Seok
    Son, M. Kwan Ryu, S. Lee, J. Kyeong Jeong, “Improvement in the
    device performance of tin-doped indium oxide transistor by oxygen
    high pressure annealing at 150 °C”, Applied Physics Letters, vol.
    100, No. 16, pp. 162108 (2012)
    [76] S. Ju, K. Lee, M.-H. Yoon, A. Facchetti, T.J. Marks, D.B. Janes,
    “High performance ZnO nanowire field effect transistors with
    organic gate nanodielectrics: Effects of metal contacts and ozone
    treatment”, Nanotechnology, vol. 18, No. 15, pp. 155201 (2007)
    [77] J. Sanghyun, L. Kangho, D.B. Janes, L. Jianye, R.P.H. Chang, M.-
    H. Yoon, A. Facchetti, T.J. Marks, “ZnO Nanowire Field-Effect
    Transistors: Ozone-Induced Threshold Voltage Shift and Multiple
    Nanowire Effects”, Nanotechnology, vol. 2, pp. 445-448 (2006)
    [78] W. Jyh-Liang, H. Tsang-Yen, H. Chuan-Chou, S. Der-Chi, P.-Y.
    Yang, et al., “Photoresponse of Zinc oxide thin-film transistors with
    location-controlled crystal grains fabricated by low-temperature
    hydrothermal method”, Nanoelectronics Conference (INEC), pp. 1-2
    (2011)
    [79] P. Jin Jeon, Y. Tack Lee, R. Ha, H.-J. Choi, K. Hyuck Yoon, M.M.
    Sung, S. Im, “Annealing-induced conductivity transition in ZnO
    nanowires for field-effect devices”, Applied Physics Letters, vol.
    101, No. 4, pp. 043504 (2012)
    [80] C.P. Burke-Govey, N.O.V. Plank, “Review of hydrothermal ZnO
    nanowires: Toward FET applications”, Journal of Vacuum Science &
    Technology B, vol. 31, No. 6, pp. F101 (2013)
    [81] J. Zhang, X.F. Li, J.G. Lu, P. Wu, J. Huang, Q. Wang, B. Lu, Y.Z.
    Zhang, B.H. Zhao, Z.Z. Ye, “Evolution of electrical performance of
    ZnO-based thin-film transistors by low temperature annealing”, AIP
    Advances, vol. 2, No. 2, pp. 022118 (2012)
    [82] J.K. Jeong, H. Won Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, “Origin
    of threshold voltage instability in indium-gallium-zinc oxide thin
    film transistors”, Applied Physics Letters, vol. 93, No. 12, pp.
    123508 (2008)
    [83] B.S. Yang, S. Park, S. Oh, Y.J. Kim, J.K. Jeong, C.S. Hwang, H.J.
    Kim, “Improvement of the photo-bias stability of the Zn–Sn–O field
    effect transistors by an ozone treatment”, Journal of Materials
    Chemistry, vol. 22, No. 2, pp. 10994 (2012)
    [84] F. Chaabouni, M. Abaab, B. Rezig, “Metrological characteristics of
    ZNO oxygen sensor at room temperature”, Sensors and Actuators B:
    Chemical, vol. 100, No. 1-2, pp. 200-204 (2004)
    [85] P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronning, J.G.
    Lu, “Photovoltaic effect on the conductive atomic force microscopic
    characterization of thin dielectric films”, Applied Physics Letters,
    vol. 89, No. 13, pp. 133109 (2006)
    [86] Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, “Electronic transport
    through individual ZnO nanowires”, Applied Physics Letters, vol.
    84, No. 22, pp. 4556 (2004)
    [87] Y.W. Heo, L.C. Tien, D.P. Norton, B.S. Kang, F. Ren, B.P. Gila, S.J.
    Pearton, “Electrical transport properties of single ZnO nanorods”,
    Applied Physics Letters, vol. 85, No. 11, pp. 2002 (2004)
    [88] Y.V. Li, K.G. Sun, J.I. Ramirez, T.N. Jackson, “Trilayer ZnO Thin-
    Film Transistors With In Situ Al2O3 Passivation”, IEEE Electron
    Device Letters, vol. 34, No. 11, pp. 1400-1402 (2013)
    [89] S. Ho Rha, U. Ki Kim, J. Jung, E. Suk Hwang, S. Jun Lee, W. Jeon,
    Y. Woo Yoo, J.-H. Choi, C. Seong Hwang, “Variation in the
    threshold voltage of amorphous-In2Ga2ZnO7 thin-film transistors
    by ultrathin Al2O3 passivation layer”, Journal of Vacuum Science &
    Technology B, vol. 31, No. 6, pp. 061205 (2013)
    [90] M. Tae-Hyoung, J. Min-Chang, O. Byeong-Yun, H. Moon-Ho, J.
    Min-Hong, L. Woo-Young, M. Jae-Min, “Chemical surface
    passivation of HfO2 films in a ZnO nanowire transistor”,
    Nanotechnology, vol. 17, No. 9, pp. 2116-2121 (2006)
    [91] C. Sung-Hwan, H. Min-Koo, “Effect of Deposition Temperature of
    SiOx Passivation Layer on the Electrical Performance of a-IGZO
    TFTs”, Electron Device Letters, vol. 33, No. 3, pp. 396-398 (2012)
    [92] Zhiyong Fan, Dawei Wang, Pai-Chun Chang, Wei-Yu Tseng, Jia G.
    Lu, “ZnO nanowire field-effect transistor and oxygen sensing
    property”, Applied Physics Letters, vol. 85, pp. 5923 (2004)
    [93] Sunghoon Song, Woong-Ki Hong, Soon-Shin Kwon, Takhee Lee,
    “Passivation effects on ZnO nanowire field effect transistors under
    oxygen,ambient, and vacuum environments”, Applied Physics
    Letters, vol. 92, pp. 263109-1 (2008)

    無法下載圖示 校內:2023-06-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE