| 研究生: |
王昱琪 Wang, Yu-Chi |
|---|---|
| 論文名稱: |
非線性動力反算於飛行控制系統設計之應用 Application of NDI in Flight Control System Design |
| 指導教授: |
許棟龍
Sheu, Donglong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 非線性動力反算 、飛行控制 、飛行力學 |
| 外文關鍵詞: | Nonlinear Dynamic Inversion, NDI, Flight Control, Flight Dynamics |
| 相關次數: | 點閱:140 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於應用非線性動力反算方法(Nonlinear Dynamic Inversion, NDI),針對無人戰鬥飛機(Unmanned Combat Aerial Vehicle, UCAV)設計一飛行控制系統,滿足其飛行控制需求。為適用於不同飛行操作,研究中係直接以非線性運動方程式設計控制系統,而非先將動態特性予以線性化。另,六自由度運動方程式共有12個狀態變數,如何以四個控制變數使其飛行於所需之飛行狀態,一般NDI方法並非可以立即使用之以設計飛行控制系統,為克服此困難,其方法為將控制系統分為數個次系統階層。本論文將以一UCAV之控制系統設計為例,說明上述之NDI控制系統設計方法及其有效性。
The objective of this thesis is to develop a nonlinear dynamic inversion (NDI) method for designing the flight control system of a UCAV. To adapt to large motions, in this study, the control design is based on the original nonlinear equations of motion without linearization, as in conventional control design method. By using the NDI method, the changing rates of state variables are assigned according to some desired models of responses. Since there are 12 state variables in the six degree-of-freedom equations of motion but there are only 4 control variables, how to use the 4 controls to make the flight satisfy the desired conditions poses an important issue which is not so readily obvious by using the conventional NDI method presented in many existing literatures. Such problems are solved in this thesis by dividing the equations of motion into several “layers” of subsystems with different “hierarchies.” To validate the proposed NDI method, in this paper, the control system designed for an unmanned combat aerial vehicle (UCAV) is presented as a numerical example.
[1] S. H. Lane and R.F. Stengel, “Flight Control Design Using Non-Linear Inverse Dynamics,” Automatica, Vol. 24, No. 4: pp. 471-483, 1988.
[2] G. A. Smith and G. Meyer, “Aircraft Automatic Flight Control System with Model Inversion,” in Control and Dynamic Systems, Vol. 38, Advances in Aeronautical Systems, Academic Press, Inc. 1990.
[3] S. A. Snell, D.F. Enns, and W.L. Garrard, Jr., “Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4: pp. 976-984, July-August 1992.
[4] F. Holzapfel and G. Sachs, “Dynamic Inversion based control concept with application to an unmanned aerial vehicle, ” AIAA Paper 2004-4907, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Rhode Island, 2004.
[5] Yihua Cao, Yong Chen, Kungang Yuan and Changjiang Fin, “Nonlinear inverse dynamics control of the aircraft in the presence of windshear,” Aircraft Engineering and Aerospace Technology, Vol. 76, No. 6, 2004, pp. 592--599.
[6] G. Herrmann, P. P. Menon, M. C. Turner, D. G. Bates and I. Postlethwaite, “Anti-windup synthesis for nonlinear dynamic inversion control schemes,” International Journal of Robust and Nonlinear Control, 2009.
[7] Krener, A. J., “On the Equivalence of Control Systems and Linearizations of Nonlinear Systems,” SIAM Journal of Control and Optimization, Vol. 11, 1973, pp. 670-676.
[8] Brockett, R. W., “Feedback Invariants for Nonlinear Systems,” Proceedings of VII IFAC Congress, Helsinki, Finland, 1978, pp. 1115-1120.
[9] Singh, S. N. and Rugh, W. J., “Decoupling in a Class of Nonlinear Systems by State Variable Feedback,” Transactions of ASME Journal of Dynamic Systems Measurements and Control, Vol. 94, 1972, pp. 323-329.
[10] Freund, E., “Design of Time-Variable Multivariable Systems by Decoupling and by the Inverse,”IEEE Transactions of Automatic Control, AC-16, Vol. 2, 1971, pp. 183-185.
[11] Porter, W. A., “Diagonalisation and Inverses for Nonlinear Systems,” International Journal of Control, Vol. 10, 1970, pp. 252-264.
[12] Isidori, A., Krener, A. J., Giorgi, C., and Monaco, S., “Nonlinear Decoupling Via Feedback: a Differential Geometry Approach,” IEEE Transactions of Automatic Control, AC-26, 1981, pp. 331-345.
[13] Byrnes, W. A., “Diagonalisation and Inverses for Nonlinear Systems,” International Journal ofControl, Vol. 10, 1970, pp. 252-264.
[14] Bugaski, D. J., Enns, D. F., and Elgersma, M. R., “A Dynamic Inversion Based Control with Application to the F-18 HARV,” AIAA Paper 90-3407, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, OR, 1990, pp. 826-839.
[15] Honeywell Technology Center and Houston Engineering Center, “Application of MACH to X-38 Drop Test Vehicle,” HTC Contract Number 7028327, for NASA Johnson Space Center, June 1997.
[16] S. Antony Snell, Dale F. Enns, and William L. Garrard Jr., “Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft,” Journal of Guidance, Control, and Dynamics Vol. 15, No. 4, July–August 1992.
[17] Z. Cheng, D. Necsulescu, B. Kim, “MODEL PREDICTIVE CONTROL AND DYNAMIC INVERSION FOR UNMANNED AERIAL VEHICLE,” 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles Instituto Superior Técnico, Lisboa, Portugal July 5-7, 2004.
[18] Yihua Cao,Yong , Chen Kungang Yuan and Changjiang Jin, “Nonlinear inverse dynamics control of the aircraft in the presence of windshear,” Aircraft Engineering and Aerospace Technology Volume 76 • Number 6 •2004 • pp. 592–599
[19] M. Christopher Cotting and Timothy H. Cox, “A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design,” NASA Dryden Flight Research Center Edwards, California,2005.
[20] Justin Teo and Jonathan P. How, “Equivalence between Approximate Dynamic Inversion and Proportional-Integral Control,”Technical Report ACL08–01 Aerospace Controls Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology, September 29, 2008.
[21] Shashiprakash Singh and Radhakant Padhi, “Automatic Landing of Unmanned Aerial Vehicles Using Dynamic Inversion,”Proceedings of the International Conference on Aerospace Science and Technology 26-28 June 2008, Bangalore, India.
[22] Peter Ortner, Luigi del Re, “Autopilot Design Comparison and Flight Experiments for a Small UAV,” Proceedings of the 7th Asian Control Conference, Hong Kong, China, August 27-29, 2009.
[23] Daigoro Ito, Jennifer Georgie, John Valasek, Donald T. Ward, “Reentry Vehicle Flight Controls Design Guidelines:Dynamic Inversion,”for NASA Johnson Space Center, March 2002.
[24] 卜悅茹, 無人飛行載具導引飛控之軟體與硬體模擬, 國立成功大學航空太空研究所碩士論文, 2004
[25] 林煥巍, 無人飛行載具導引飛控整合自動駕駛儀參數選取之研究, 國立成功大學航空太空研究所碩士論文, 2004
[26] Sungjin Cho, Seung-Hwan Kim, Dong-Gyun Choe, “Robust Missile Autopilot Design using Dynamic Inversion and PI Control,” Agency for Defense Development, P.O. Box 35-3, Yuseong, Daejeon, 305-600, Republic of Korea.
[27] 許棟龍、藍川滔、王昱琪、臧瑞傳、與何志遠, “Application of Nonlinear Dynamic Inversion to Controlling a UAV in Adverse Weather,” 第16屆國防科技研討會論文集,2007年11月30日於桃園,龍潭,pp. (1-131)—(1-140)。
[28] 王昱琪、許棟龍、與藍川滔(2009年12月12日): 「非線性動力反算於飛行控制系統設計之應用。」 2009中華民國航空太空學會/中華民用航空學會聯合學術研討會, 台北市,2009年12月12日。
[29] Lan, C. E., “VORSTAB-A Computer Program for Calculating Lateral-Directional Stability Derivatives with Vortex Flow Effect,” NASA CR-172501, January 1985.
[30] Wang, Z. Lan, C. E. and Brandon, J. M., “Fuzzy Logic Modeling of Nonlinear Unsteady Aerodynamics,” AIAA Paper 98-4351, Aug. 1998.
[31] Che-Ping Su and C. Edward Lan, “Rapid Development of Simulation Models for Flight Dynamic Application,” AIAA Paper 99-4105, Aug. 1999.
[32] Li, J. and Lan, C. E., “Unsteady Aerodynamic Modeling of Aircraft Response to Atmospheric Turbulence,” AIAA Paper 2003-5473, Aug. 2003.