簡易檢索 / 詳目顯示

研究生: 趙翊雄
Chao, I-Hsiung
論文名稱: 魟魚型水中機器人研製
The Developement of The Ray-Type Underwater Robot
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 水下機器人胸鰭魚型機器人水下無人載具
外文關鍵詞: underwater robot, ray, robotic fish, AUV
相關次數: 點閱:115下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究是以研發用胸鰭擺動,來達成水中活動目的之仿生魟魚型機器人,同時針對此種胸鰭推進類型機器人的特性進行研究與實驗。在本論文機器人設計上,嘗試設計使用機構來同時解決鰭面角度與擺動控制問題與減輕馬達負擔,並以此機構為出發點,使用PIC16F87XA晶片為控制核心,結合無線通訊模組與紅外線感測器,使機器人除了能夠接收使用者命令而行動外,也能在水中自行活動並迴避障礙物之目的,並能讓使用者同步獲得機器人周遭環境資訊。
    本論文最後以各種運動模式實驗展現本機器人所具有的水中活動能力,並探討此類型機器人所具有的特性與問題。

    The purpose of this thesis is to research and develop a ray-type biomimetic robot whose propulsive power is based on the swing of the pectoral fins and to discuss and verify the feature of the MPF(Median and/or Pectoral Fin) robot. The design of the ray-type robot employs a mechanism which not only can control the angle of the petoral fin, swing it, but also can reduce the loading on motors at the same time. The robot uses PIC16F87XA as the core controller and combines wireless communication modules, and IR sensors fot its performance. These make the robot can not only act upon user’s command but also swim in the water by itself. In addtion, users can have the same underwater information as the robot has synchronally.
    This thesis shows the robot’s underwater maneuverability and stabality with experiments and discusses the feature and the problems of the MPF robots.

    目錄 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 文獻回顧 4 1.4 論文架構 6 第2章 硬體架構與介紹 7 2.1 整體設計與系統架構概觀 7 2.2 硬體系統架構與機器人規格 8 2.3 機器人機構設計 11 2.3.1 防水機構設計 11 2.3.2 魚鰭運動控制機構設計 14 2.4 動力與電路系統硬體介紹 18 2.4.1 伺服馬達 18 2.4.2 光耦合器PC847 20 2.4.3 驅動模組與電壓調整器 21 2.4.4 控制核心晶片簡介 23 2.5 通訊系統硬體介紹 24 2.5.1 藍芽通訊模組 25 2.5.2 無線電模組 26 2.6 感測器硬體介紹 28 2.6.1 紅外線感測器 28 第3章 程式規劃與架構 32 3.1 控制晶片程式規劃 32 3.1.1 程式整體設計及伺服馬達控制訊號輸出 33 3.1.2 伺服馬達狀態控制 37 3.1.3 無線傳輸通訊封包處理 39 3.2 人機操作介面 44 3.3 運動模式設計 45 3.3.1 前進/後退模式 47 3.3.2 轉彎游動 48 3.3.3 原地迴轉 49 3.3.4 上浮/下潛動作模式 49 第4章 實驗結果與討論 54 4.1 測試環境與實驗項目簡介 54 4.2 鰭面角度與游動速度分析 54 4.3 原地迴轉 59 4.4 轉彎實驗(U型迴轉) 61 4.5 潛水/浮上實驗 63 4.6 避障實驗 71 4.7 實驗結果討論 74 第5章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 75 参考文獻 76

    [1] NASA, Opportunity, http://marsrover.nasa.gov/, 2004.
    [2] Northrop Grumman, Wheelbarrow,
    http://www.northropgrummaninternational.com/, 2010.
    [3] J.YUH, “Design and Control of Autonomous Underwater Robots: A Survey”, Autonomous 8, p.7-24, 2000.
    [4] Carl T.F.Ross, “A conceptual design of an underwater vehicle”, Ocean Engineering 33, p.2087-2104, 2006.
    [5] Filoktimon Repoulias, Evangelos Papadopoulos, “Planar trajectory planning and tracking control design for underactuated AUVs”, Ocean Engineering 34, p.1650-1667, 2007.
    [6] M. Chyba, T. Haberkorn, R.N. Smith, S.K. Choi, “Design and implementation of time efficient trajectories for autonomous underwater vehicles”, Ocean Engineering 35, p.63-76, 2008.
    [7] Silvia M. Zanoli, Giuseppe Conte, “Remotely operated vehicle depth control”, Control Engineering Practice 16, p.569-584, 2008.
    [8] Øistein Hasvold, Nils J. Størkersen, Sissel Forseth, Torleif Lian, “Power sources for autonomous underwater vehicles”, Journal of Power Sources 162, p.935–942, 2006.
    [9] Hayato Konto, Tamaki Ura, “Navigation of an AUV for investigation of underwater structures”, Control Engineering Practice 12, p.1551–1559, 2004.
    [10] Satomi Ohata, Kazuo Ishii, Hiroshi Sakai, Toshinari Tanaka, Tamaki Ura, “An autonomous underwater vehicle for observation of underwater structure”, International Congress Series 1291, p.277– 280, 2006.
    [11] E. Bovio, D. Cecchi, F. Baralli, “Autonomous underwater vehicles for scientific and naval operations”, Annual Reviews in Control 30, p.117–130, 2006.
    [12] Erdal Cayirci, Hakan Tezcan, Yasar Dogan, Vedat Coskun, “Wireless sensor networks for underwater survelliance systems”, Ad Hoc Networks 4, p.431–446, 2006.
    [13] Umesh A. Korde, ” Study of a jet-propulsion method for an underwater vehicle”. Ocean Engineering 31, p.1205–1218, 2004.
    [14] Jeff Sherman, Russ E. Davis, W. B. Owens, J. Valdes, “The Autonomous Underwater Glider “Spray””, IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, October 2001
    [15] Michael Sfakiotakis, David M. Lane, J. Bruce C. Davies, “Review of Fish Swimming Modes for Aquatic Locomotion”, IEEE Journal of Oceanic Engineering, Vol. 24, No. 2, April 1999.
    [16] Huosheng Hu, “Biologically Inspired Design of Autonomous Robotic Fish at Essex”, Proceedings of the IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems, September 7-8, Sheffield, 2006.
    [17] Barrett D., Grosenbaugh M., Triantafyllou M., ” The Optimal Control of a Flexible Hull Robotic Undersea Vehicle Propelled by an Oscillating Foil”, Autonomous Underwater Vehicle Technology, p.1-9, 1996.
    [18] H. Kagemoto, M.J. Wolfgang, D.K.P. Yue, M.S. Triantafyllou, “Force and Power Estimation in Fish-Like Locomotion Using a Vortex-Lattice Method”, Journal of Fluids Engineering, Vol.122, p.239-253, June 2006.
    [19] Kristi A. Morgansen, Benjamin I. Triplett, and Daniel J. Klein, “Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles”, IEEE Transactions on Robotics, Vol.23, No.3, July 2004.
    [20] J. Shaoa, L. Wanga, J.Yu, “Development of an artificial fish-like robot and its application in cooperative transportation”, Control Engineering Practice 16, p.569–584, 2008.
    [21] Chen Hong, “Hydrodynamic Analysis and Simulation of A Swimming Bionic Robot Tuna”, Journal of Hydrodynamics 19(4), p.412-420, 2007.
    [22] Afzal Suleman, Curran Crawford, “Design and testing of a biomimetic tuna using shape memory alloy induced propulsion”, Computers and Structures 86, p.491–499, 2006.
    [23] Michael G. Borgen, Gregory N. Washington, and Gary L. Kinzel, “Design and Evolution of a Piezoelectrically Actuated Miniature Swimming Vehicle”, IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 1, MARCH, 2003.
    [24] J. Edward Colgate and Kevin M. Lynch, “Mechanics and Control of Swimming: A Review”, IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, July 2004.
    [25] E. Hoo, K.D. Do, J. Pan, “An investigation on the lift force of a wing pitching in dynamic stall for a comfort control vessel”, Journal of Fluids and Structures 21, p.707–730, 2005.
    [26] 劉彥杰,機器魚實作,國立成功大學工程科學系碩士論文,民國 97年 7月。
    [27] Kin Huat Low, “Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins”, International Journal of Automation and Computing 4, p.348-357, 2006.
    [28] Malcolm A. MacIver, Ebraheem Fontaine, and Joel W. Burdick, “Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish”, IEEE Journal of Oceanic Engineering, Vol.29, No.3, July 2004.
    [29] Y. Toda, N. Sogihara, Y. Sanada, M. Danno, “The motion of a fish-like under-water vehicle with two undulating side fins”, Proceedings of the Third International Symposium on Aero Aqua Bio-mechanisms, Okinawa, Japan, 2006.
    [30] Stephen Licht, Victor Polidoro,Melissa Flores, Franz S. Hover and Michael S. Triantafyllou, “Design and Projected Performance of a Flapping Foil AUV”, IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, July 2004.
    [31] James Louis Tangorra, S. Naomi Davidson, IanW. Hunter, Peter G. A. Madden, George V. Lauder,Haibo Dong, Meliha Bozkurttas, and Rajat Mittal, “The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles”, IEEE Journal of Oceanic Engineering, Vol. 32, No. 3, July 2007.
    [32] Aqua Ray, Festo, http://www.festo.com/, 2009.
    [33] DS610, Align, http://www.align.com.tw/
    [34] Futaba, “Digital FET Servos”.
    [35] SHARP, “PC817 Series, High Density Mounting Type Photocoupler”.
    [36] National Semiconductor, ”LM117/LM317A/LM317 3-Terminal Adjustable Regulator”, 1999
    [37] PIC16F87XA, Microchip, http://www.mircochip.com/
    [38] SHARP, “GP2D12/GP2D15, General Purpose Type Distance Measuring Sensor”.
    [39] 禚建威,居家環境清潔機器人,國立成功大學工程科學系碩士論文,民國96年 7月。

    下載圖示 校內:2013-08-23公開
    校外:2014-08-23公開
    QR CODE