| 研究生: |
趙翊雄 Chao, I-Hsiung |
|---|---|
| 論文名稱: |
魟魚型水中機器人研製 The Developement of The Ray-Type Underwater Robot |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 水下機器人 、胸鰭 、魚型機器人 、水下無人載具 |
| 外文關鍵詞: | underwater robot, ray, robotic fish, AUV |
| 相關次數: | 點閱:115 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究是以研發用胸鰭擺動,來達成水中活動目的之仿生魟魚型機器人,同時針對此種胸鰭推進類型機器人的特性進行研究與實驗。在本論文機器人設計上,嘗試設計使用機構來同時解決鰭面角度與擺動控制問題與減輕馬達負擔,並以此機構為出發點,使用PIC16F87XA晶片為控制核心,結合無線通訊模組與紅外線感測器,使機器人除了能夠接收使用者命令而行動外,也能在水中自行活動並迴避障礙物之目的,並能讓使用者同步獲得機器人周遭環境資訊。
本論文最後以各種運動模式實驗展現本機器人所具有的水中活動能力,並探討此類型機器人所具有的特性與問題。
The purpose of this thesis is to research and develop a ray-type biomimetic robot whose propulsive power is based on the swing of the pectoral fins and to discuss and verify the feature of the MPF(Median and/or Pectoral Fin) robot. The design of the ray-type robot employs a mechanism which not only can control the angle of the petoral fin, swing it, but also can reduce the loading on motors at the same time. The robot uses PIC16F87XA as the core controller and combines wireless communication modules, and IR sensors fot its performance. These make the robot can not only act upon user’s command but also swim in the water by itself. In addtion, users can have the same underwater information as the robot has synchronally.
This thesis shows the robot’s underwater maneuverability and stabality with experiments and discusses the feature and the problems of the MPF robots.
[1] NASA, Opportunity, http://marsrover.nasa.gov/, 2004.
[2] Northrop Grumman, Wheelbarrow,
http://www.northropgrummaninternational.com/, 2010.
[3] J.YUH, “Design and Control of Autonomous Underwater Robots: A Survey”, Autonomous 8, p.7-24, 2000.
[4] Carl T.F.Ross, “A conceptual design of an underwater vehicle”, Ocean Engineering 33, p.2087-2104, 2006.
[5] Filoktimon Repoulias, Evangelos Papadopoulos, “Planar trajectory planning and tracking control design for underactuated AUVs”, Ocean Engineering 34, p.1650-1667, 2007.
[6] M. Chyba, T. Haberkorn, R.N. Smith, S.K. Choi, “Design and implementation of time efficient trajectories for autonomous underwater vehicles”, Ocean Engineering 35, p.63-76, 2008.
[7] Silvia M. Zanoli, Giuseppe Conte, “Remotely operated vehicle depth control”, Control Engineering Practice 16, p.569-584, 2008.
[8] Øistein Hasvold, Nils J. Størkersen, Sissel Forseth, Torleif Lian, “Power sources for autonomous underwater vehicles”, Journal of Power Sources 162, p.935–942, 2006.
[9] Hayato Konto, Tamaki Ura, “Navigation of an AUV for investigation of underwater structures”, Control Engineering Practice 12, p.1551–1559, 2004.
[10] Satomi Ohata, Kazuo Ishii, Hiroshi Sakai, Toshinari Tanaka, Tamaki Ura, “An autonomous underwater vehicle for observation of underwater structure”, International Congress Series 1291, p.277– 280, 2006.
[11] E. Bovio, D. Cecchi, F. Baralli, “Autonomous underwater vehicles for scientific and naval operations”, Annual Reviews in Control 30, p.117–130, 2006.
[12] Erdal Cayirci, Hakan Tezcan, Yasar Dogan, Vedat Coskun, “Wireless sensor networks for underwater survelliance systems”, Ad Hoc Networks 4, p.431–446, 2006.
[13] Umesh A. Korde, ” Study of a jet-propulsion method for an underwater vehicle”. Ocean Engineering 31, p.1205–1218, 2004.
[14] Jeff Sherman, Russ E. Davis, W. B. Owens, J. Valdes, “The Autonomous Underwater Glider “Spray””, IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, October 2001
[15] Michael Sfakiotakis, David M. Lane, J. Bruce C. Davies, “Review of Fish Swimming Modes for Aquatic Locomotion”, IEEE Journal of Oceanic Engineering, Vol. 24, No. 2, April 1999.
[16] Huosheng Hu, “Biologically Inspired Design of Autonomous Robotic Fish at Essex”, Proceedings of the IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems, September 7-8, Sheffield, 2006.
[17] Barrett D., Grosenbaugh M., Triantafyllou M., ” The Optimal Control of a Flexible Hull Robotic Undersea Vehicle Propelled by an Oscillating Foil”, Autonomous Underwater Vehicle Technology, p.1-9, 1996.
[18] H. Kagemoto, M.J. Wolfgang, D.K.P. Yue, M.S. Triantafyllou, “Force and Power Estimation in Fish-Like Locomotion Using a Vortex-Lattice Method”, Journal of Fluids Engineering, Vol.122, p.239-253, June 2006.
[19] Kristi A. Morgansen, Benjamin I. Triplett, and Daniel J. Klein, “Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles”, IEEE Transactions on Robotics, Vol.23, No.3, July 2004.
[20] J. Shaoa, L. Wanga, J.Yu, “Development of an artificial fish-like robot and its application in cooperative transportation”, Control Engineering Practice 16, p.569–584, 2008.
[21] Chen Hong, “Hydrodynamic Analysis and Simulation of A Swimming Bionic Robot Tuna”, Journal of Hydrodynamics 19(4), p.412-420, 2007.
[22] Afzal Suleman, Curran Crawford, “Design and testing of a biomimetic tuna using shape memory alloy induced propulsion”, Computers and Structures 86, p.491–499, 2006.
[23] Michael G. Borgen, Gregory N. Washington, and Gary L. Kinzel, “Design and Evolution of a Piezoelectrically Actuated Miniature Swimming Vehicle”, IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 1, MARCH, 2003.
[24] J. Edward Colgate and Kevin M. Lynch, “Mechanics and Control of Swimming: A Review”, IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, July 2004.
[25] E. Hoo, K.D. Do, J. Pan, “An investigation on the lift force of a wing pitching in dynamic stall for a comfort control vessel”, Journal of Fluids and Structures 21, p.707–730, 2005.
[26] 劉彥杰,機器魚實作,國立成功大學工程科學系碩士論文,民國 97年 7月。
[27] Kin Huat Low, “Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins”, International Journal of Automation and Computing 4, p.348-357, 2006.
[28] Malcolm A. MacIver, Ebraheem Fontaine, and Joel W. Burdick, “Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish”, IEEE Journal of Oceanic Engineering, Vol.29, No.3, July 2004.
[29] Y. Toda, N. Sogihara, Y. Sanada, M. Danno, “The motion of a fish-like under-water vehicle with two undulating side fins”, Proceedings of the Third International Symposium on Aero Aqua Bio-mechanisms, Okinawa, Japan, 2006.
[30] Stephen Licht, Victor Polidoro,Melissa Flores, Franz S. Hover and Michael S. Triantafyllou, “Design and Projected Performance of a Flapping Foil AUV”, IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, July 2004.
[31] James Louis Tangorra, S. Naomi Davidson, IanW. Hunter, Peter G. A. Madden, George V. Lauder,Haibo Dong, Meliha Bozkurttas, and Rajat Mittal, “The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles”, IEEE Journal of Oceanic Engineering, Vol. 32, No. 3, July 2007.
[32] Aqua Ray, Festo, http://www.festo.com/, 2009.
[33] DS610, Align, http://www.align.com.tw/
[34] Futaba, “Digital FET Servos”.
[35] SHARP, “PC817 Series, High Density Mounting Type Photocoupler”.
[36] National Semiconductor, ”LM117/LM317A/LM317 3-Terminal Adjustable Regulator”, 1999
[37] PIC16F87XA, Microchip, http://www.mircochip.com/
[38] SHARP, “GP2D12/GP2D15, General Purpose Type Distance Measuring Sensor”.
[39] 禚建威,居家環境清潔機器人,國立成功大學工程科學系碩士論文,民國96年 7月。