簡易檢索 / 詳目顯示

研究生: 黃則緯
Huang, Ze-Wei
論文名稱: 利用旋轉塗佈法製備高熵高介電常數的(Al, Ti, V, Zr, Hf)Ox 薄膜並應用於先進閘極堆疊元件
Spin Coating Synthesis of High-entropy High-k (Al, Ti, V, Zr, Hf)Ox Films for Advanced Gate Stacks
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 78
中文關鍵詞: 旋轉塗佈法高熵氧化物高介電常數介電層金屬氧化物半導體(Al, Ti, V, Zr, Hf)Ox 薄膜熱穩定性
外文關鍵詞: spin coating, high-entropy oxide, high-k dielectrics, MOS, (Al, Ti, V, Zr, Hf)Ox film, thermostability
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,我們利用相對低溫的溶液製程,透過旋轉塗佈法沈積高熵高介電常數的(Al, Ti, V, Zr, Hf)Ox 薄膜在n-型(100)矽基板上,並應用於先進閘極堆疊元件中的介電層。在對照組的部分,(Al, Ti, V, Zr, Hf)Ox 薄膜的相關性質會與中熵氧化物進行比較,包括 (Al, Ti, V, Zr)Ox、(Al, V, Zr, Hf)Ox、(Al, Ti, V, Hf)Ox薄膜。從C-V、I-V 特性結果來看,高熵氧化物 (HEOs) 薄膜在1kHz下展現最高的電容值並且仍保持最低的漏電流密度。利用XPS分析HEOs 薄膜各元素的氧化態,發現V5+的產生與Al3+間的電荷平衡有關。EDS分析指出在HEOs及MEOs各元素的原子比接近等莫耳比,而EDS mapping 也指出各元素均勻分布在HEOs及MEOs的樣品中。經由計算所有樣品的介電常數,HEOs 薄膜擁有最高的介電常數( 32)。此外,與MEOs相比,HEO-based的閘極堆疊元件經過快速升溫製程後仍保有較低的漏電流密度,這表示高熵氧化物(Al, Ti, V, Zr, Hf)Ox 薄膜擁有不錯的熱穩定性表現。我們的這些結果證明(Al, Ti, V, Zr, Hf)Ox 薄膜有很大的潛力可以應用在下一代的先進閘極堆疊元件。

    A low-temperature solution-based process through spin coating was developed to synthesize high-entropy high-k (Al, Ti, V, Zr, Hf)Ox films on n-type (100) Si substrates for advanced gate stacks. (Al, Ti, V, Zr, Hf)Ox films were also compared with medium-entropy oxides (MEOs), including (Al, Ti, V, Zr)Ox, (Al, V, Zr, Hf)Ox, and (Al, Ti, V, Hf)Ox films. In C-V and I-V characteristics, the high-entropy oxide (HEO) films exhibited the highest capacitance at 1 kHz and the lowest gate leakage current among all samples. In XPS analysis, the chemical states of HEO films were identified. The observation of V5+ and Al3+ was attributable to the charge balance (compensation) in the system. EDS analysis indicated equi-molar atomic ratios for each constituent element for HEOs and MEOs, and EDS mapping also implied homogenous distributions of each constituent element. HEOs possessed the highest k ( 32) among all samples. Furthermore, HEO-based gate stacks after rapid thermal process (RTP) still exhibited lower gate leakage current density than MEOs did after RTP, indicating excellent thermostability of HEO (Al, Ti, V, Zr, Hf)Ox films. Our results indicated great promise of (Al, Ti, V, Zr, Hf)Ox films in advanced gate stacks for next generation devices.

    摘要 i Abstract ii 致謝 iii Content iv Table content vi Figure content vii Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Moore’s law 1 1.1.2 Metal oxide semiconductor (MOS) capacitor 1 1.1.3 C-V characteristics of an ideal MOS device 2 1.1.4 Ideal C-V curves in a MOS capacitor 4 1.1.5 Non-ideal C-V curves in a MOS capacitor 6 1.2 Overview of gate dielectric material 11 1.2.1 Traditional SiO2 oxide layer 11 1.2.2 High-k oxide material 12 1.2.3 Requirements for high-k dielectrics 12 1.3 High entropy material 15 1.3.1 High entropy alloys (HEAs) 15 1.3.2 Core effect of HEAs 16 1.3.3 High entropy related material 19 1.4 High-entropy oxides (HEOs) 19 1.4.1 Structures of HEOs 21 1.5 Fabrication methods for HEOs 24 1.5.1 Solid-State Reaction Synthesis 24 1.5.2 Solution-based synthesis 24 1.6 Application for HEOs 28 1.6.1 Li-ion batteries [33, 34] 28 1.6.2 Thermal and environmental protection 30 1.6.3 Catalysis 31 1.6.4 Dielectric property 33 1.6.5 Magnetic applications 35 1.7 Motivation and Objective of this study 36 Chapter 2. Experimental section 37 2.1 Materials 37 2.2 Experimental procedure 38 2.2.1 Substrate cleaning 38 2.2.2 Synthesis of HEOs and MEOs films 38 2.2.3 Deposition of metal gate (Al) 40 2.2.4 Forming gas annealing (FGA) 41 2.2.5 Rapid thermal processing (RTP) 42 2.3 Characterization 43 2.3.1 X-ray Diffraction (XRD) Analysis 43 2.3.2 Electrical probe station 44 2.3.3 I-V measurement 45 2.3.4 C-V measurement 46 2.3.5 X-ray Photoelectron Spectroscopy (XPS) 48 2.3.6 Focused ion beam (FIB) 49 2.3.7 Transmission electron microscopy (TEM) 50 Chapter 3. Results and discussion 51 3.1 Optimization of the HEO thin films process 51 3.1.1 Annealing temperature 51 3.1.2 Forming gas annealing condition 53 3.2 Electrical properties of MEO-based MOS devices 56 3.2.1 C-V measurements 57 3.2.2 I-V measurements 58 3.3 XPS analysis 59 3.4 TEM results 62 3.4.1 Thickness analysis 62 3.4.2 EDS analysis 64 3.5 Extraction of dielectric constant (k) 66 3.6 Thermal stability 67 3.6.1 I-V measurements after RTP 69 3.6.2 TEM results after RTP 70 Chapter 4. Conclusion and future work 72 4.1 Future work 73 Chapter 5. Reference 74

    [1] M. M. Waldrop, "The chips are down for Moore's law," Nature, 530(7589), 144-147, (2016).
    [2] S. M. Sze and K. K. Ng, Physics of semiconductor devices. Third ed. (2006): John wiley & sons.
    [3] D. A. Neamen, Semiconductor Physics And Devices. (2011): McGraw-Hill Education.
    [4] B. E. Deal, "Standardized terminology for oxide charges associated with thermally oxidized silicon," Ieee Transactions on Electron Devices, 27(3), 606-608, (1980).
    [5] International roadmap for devices and systmes. 2018 ed.
    [6] M. Houssa, L. Pantisano, L. A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, "Electrical properties of high-kappa gate dielectrics: Challenges, current issues, and possible solutions," Materials Science & Engineering R-Reports, 51(4-6), 37-85, (2006).
    [7] J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science & Engineering R-Reports, 88, 1-41, (2015).
    [8] D. X. Xia and J. B. Xu, "High mobility and low operating voltage ZnGaO and ZnGaLiO transistors with spin-coated Al2O3 as gate dielectric," Journal of Physics D-Applied Physics, 43(44), 442001, (2010).
    [9] A. Kumar, S. Mondal, S. G. Kumar, and K. S. R. K. Rao, "High performance sol-gel spin-coated titanium dioxide dielectric based MOS structures," Materials Science in Semiconductor Processing, 40, 77-83, (2015).
    [10] J. Liu, A. X. Wei, X. H. Zhao, and H. Y. Zhang, "Structural and electrical properties of Ta2O5 thin films prepared by photo-induced CVD," Bulletin of Materials Science, 34(3), 443-446, (2011).
    [11] J. Cho, P. Choi, N. Lee, S. Kim, and B. Choi, "Dielectric Properties of Solution-Processed ZrO2 for Thin-Film Transistors," Journal of Nanoscience and Nanotechnology, 16(10), 10380-10384, (2016).
    [12] C. Liu, E. F. Chor, and L. S. Tan, "Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors," Applied Physics Letters, 88(17), 3, (2006).
    [13] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on progress in Physics, 69(2), 327, (2005).
    [14] H. Wong and H. Iwai, "On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors," Microelectronic Engineering, 83(10), 1867-1904, (2006).
    [15] M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, High-entropy alloys. Cham: Springer International Publishing. (2016).
    [16] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, 6(5), 299-303, (2004).
    [17] J. W. Yeh, "Alloy Design Strategies and Future Trends in High-Entropy Alloys," Jom, 65(12), 1759-1771, (2013).
    [18] C.-L. Lu, S.-Y. Lu, J.-W. Yeh, and W.-K. Hsu, "Thermal expansion and enhanced heat transfer in high-entropy alloys," Journal of Applied Crystallography, 46(3), 736-739, (2013).
    [19] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, 61(13), 4887-4897, (2013).
    [20] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J. P. Maria, "Entropy-stabilized oxides," Nature Communications, 6, 8, (2015).
    [21] J. Y. Zhou, J. Y. Zhang, F. Zhang, B. Niu, L. W. Lei, and W. M. Wang, "High-entropy carbide: A novel class of multicomponent ceramics," Ceramics International, 44(17), 22014-22018, (2018).
    [22] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor, N. Zhou, K. Vecchio, and J. Luo, "High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics," Scientific Reports, 6, 10, (2016).
    [23] T. Jin, X. H. Sang, R. R. Unocic, R. T. Kinch, X. F. Liu, J. Hu, H. L. Liu, and S. Dai, "Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy," Advanced Materials, 30(23), 5, (2018).
    [24] Y. Qin, J. X. Liu, F. Li, X. F. Wei, H. Z. Wu, and G. J. Zhang, "A high entropy silicide by reactive spark plasma sintering," Journal of Advanced Ceramics, 8(1), 148-152, (2019).
    [25] R. Z. Zhang, F. Gucci, H. Y. Zhu, K. Chen, and M. J. Reece, "Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides," Inorganic Chemistry, 57(20), 13027-13033, (2018).
    [26] C. Oses, C. Toher, and S. Curtarolo, "High-entropy ceramics," Nature Reviews Materials, 15, (2020).
    [27] H. Chen, H. Xiang, F.-Z. Dai, J. Liu, Y. Lei, J. Zhang, and Y. Zhou, "High porosity and low thermal conductivity high entropy (Zr0. 2Hf0. 2Ti0. 2Nb0. 2Ta0. 2) C," Journal of Materials Science & Technology, 35(8), 1700-1705, (2019).
    [28] N. Dragoe and D. Bérardan, "Order emerging from disorder," Science, 366(6465), 573-574, (2019).
    [29] A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, and H. Hahn, "Rare earth and transition metal based entropy stabilised perovskite type oxides," Journal of the European Ceramic Society, 38(5), 2318-2327, (2018).
    [30] A. Sarkar, Q. S. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, and B. Breitung, "High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties," Advanced Materials, 31(26), 9, (2019).
    [31] D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, "Colossal dielectric constant in high entropy oxides," physica status solidi (RRL)–Rapid Research Letters, 10(4), 328-333, (2016).
    [32] H. Chen, J. Fu, P. Zhang, H. Peng, C. W. Abney, K. Jie, X. Liu, M. Chi, and S. Dai, "Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability," Journal of Materials Chemistry A, 6(24), 11129-11133, (2018).
    [33] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, and H. Hahn, "High entropy oxides for reversible energy storage," Nature Communications, 9(1), 1-9, (2018).
    [34] Q. S. Wang, A. Sarkar, Z. Y. Li, Y. Lu, L. Velasco, S. S. Bhattacharya, T. Brezesinski, H. Hahn, and B. Breitung, "High entropy oxides as anode material for Li-ion battery applications: A practical approach," Electrochemistry Communications, 100, 121-125, (2019).
    [35] A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. Chakravadhanula, A. S. Gandhi, H. Hahn, and S. S. Bhattacharya, "Nanocrystalline multicomponent entropy stabilised transition metal oxides," Journal of the European Ceramic Society, 37(2), 747-754, (2017).
    [36] M. Biesuz, L. Spiridigliozzi, G. Dell'agli, M. Bortolotti, and V. M. Sglavo, "Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods," Journal of materials science, 53(11), 8074-8085, (2018).
    [37] J. Dabrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin, "Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide characterized by spinel structure," Materials Letters, 216, 32-36, (2018).
    [38] A. Q. Mao, H. Z. Xiang, Z. G. Zhang, K. Kuramoto, H. Zhang, and Y. G. Jia, "A new class of spinel high-entropy oxides with controllable magnetic properties," Journal of Magnetism and Magnetic Materials, 497, 5, (2020).
    [39] K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, and L. An, "A five-component entropy-stabilized fluorite oxide," Journal of the European Ceramic Society, 38(11), 4161-4164, (2018).
    [40] J. Gild, M. Samiee, J. L. Braun, T. Harrington, H. Vega, P. E. Hopkins, K. Vecchio, and J. Luo, "High-entropy fluorite oxides," Journal of the European Ceramic Society, 38(10), 3578-3584, (2018).
    [41] S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, and J. Luo, "A new class of high-entropy perovskite oxides," Scripta Materialia, 142, 116-120, (2018).
    [42] Y. P. Pu, Q. W. Zhang, R. Li, M. Chen, X. Y. Du, and S. Y. Zhou, "Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic," Applied Physics Letters, 115(22), 5, (2019).
    [43] S. Y. Zhou, Y. P. Pu, Q. W. Zhang, R. K. Shi, X. Guo, W. Wang, J. M. Ji, T. C. Wei, and T. Ouyang, "Microstructure and dielectric properties of high entropy Ba (Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O-3 perovskite oxides," Ceramics International, 46(6), 7430-7437, (2020).
    [44] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics. Vol. 17. (1976): John wiley & sons.
    [45] A. D. Dupuy, X. Wang, and J. M. Schoenung, "Entropic phase transformation in nanocrystalline high entropy oxides," Materials Research Letters, 7(2), 60-67, (2019).
    [46] Z. Grzesik, G. Smoła, M. Stygar, J. Dąbrowa, M. Zajusz, K. Mroczka, and M. Danielewski, "Defect structure and transport properties in (Co, Cu, Mg, Ni, Zn) O high entropy oxide," Journal of the European Ceramic Society, 39(14), 4292-4298, (2019).
    [47] R.-Z. Zhang and M. J. Reece, "Review of high entropy ceramics: design, synthesis, structure and properties," Journal of Materials Chemistry A, 7(39), 22148-22162, (2019).
    [48] M. B. Kumar and S. S. Bhattacharya, "Flame synthesis and characterization of nanocrystalline titania powders," Processing and Application of Ceramics, 6(3), 165-171, (2012).
    [49] R. Djenadic, M. Botros, C. Benel, O. Clemens, S. Indris, A. Choudhary, T. Bergfeldt, and H. Hahn, "Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications," Solid State Ionics, 263, 49-56, (2014).
    [50] Y. Dong, K. Ren, Y. H. Lu, Q. K. Wang, J. Liu, and Y. G. Wang, "High-entropy environmental barrier coating for the ceramic matrix composites," Journal of the European Ceramic Society, 39(7), 2574-2579, (2019).
    [51] Z. Zhang, S. Yang, X. Hu, H. Xu, H. Peng, M. Liu, B. P. Thapaliya, K. Jie, J. Zhao, J. Liu, H. Chen, Y. Leng, X. Lu, J. Fu, P. Zhang, and S. Dai, "Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides," Chemistry of Materials, 31(15), 5529-5536, (2019).
    [52] J. N. A. Matthews, "Semiconductor industry switches to hafnium-based transistors," Physics Today, 61(2), 25-26, (2008).
    [53] G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse, "Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)," Journal of Electron Spectroscopy and Related Phenomena, 135(2-3), 167-175, (2004).
    [54] E. O. Filatova and A. S. Konashuk, "Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries," The Journal of Physical Chemistry C, 119(35), 20755-20761, (2015).
    [55] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO 2 thin film from aqueous peroxotitanate solution," Journal of materials chemistry, 13(3), 608-613, (2003).
    [56] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, and H. K. Baik, "Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric," ACS applied materials & interfaces, 5(2), 410-417, (2013).
    [57] D. Barreca, A. Milanov, R. A. Fischer, A. Devi, and E. Tondello, "Hafnium oxide thin film grown by ALD: An XPS study," Surface Science Spectra, 14(1), 34-40, (2007).
    [58] G. Wilk, R. Wallace, and J. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," Journal of Applied Physics, 87(1), 484-492, (2000).
    [59] K. Shamala, L. Murthy, and K. N. Rao, "Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method," Materials Science and Engineering: B, 106(3), 269-274, (2004).
    [60] W.-C. Liu, D. Wu, A.-D. Li, H.-Q. Ling, Y.-F. Tang, and N.-B. Ming, "Annealing and doping effects on structure and optical properties of sol–gel derived ZrO2 thin films," Applied surface science, 191(1-4), 181-187, (2002).
    [61] P. Tirmali, A. G. Khairnar, B. N. Joshi, and A. M. Mahajan, "Structural and electrical characteristics of RF-sputtered HfO2 high-k based MOS capacitors," Solid-state electronics, 62(1), 44-47, (2011).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE