| 研究生: |
黃鈺祺 Huang, Yu-Chi |
|---|---|
| 論文名稱: |
6061-T6鋁合金在低溫下之撞擊特性與微觀結構分析 Impact response and microstructural characteristics of 6061-T6 aluminum alloy at cryogenic temperatures |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 霍普金森桿 、6061-T6鋁合金 、塑性變形 、高應變速率 、差排密度 、極低溫 |
| 外文關鍵詞: | Hopkinson bar, 6061-T6 aluminum alloy, plastic deformation, high strain rate, dislocation density, cryogenic temperature |
| 相關次數: | 點閱:129 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是探討6061-T6鋁合金在低溫下之撞擊特性與微觀結構分析。利用壓縮式霍普金森桿高速撞擊試驗機(Hopkinson bar)及低溫裝置,於應變速率分別為1000 s-1、3000 s-1和5000s-1;實驗環境溫度分別為-196℃、-100℃、0℃條件下測試,以分析溫度以及應變速率對材料塑變行為與微觀結構之影響。
實驗結果顯示,溫度和應變速率對6061-T6鋁合金之機械性質影響甚巨。在相同溫度條件下,其塑流應力值與應變速率敏感性係數均會隨應變速率之增加而上升,而加工硬化率和熱活化體積則會下降。相反地,在相同應變速率條件下,其塑流應力值與應變速率敏感性係數則會隨溫度之增加而下降,而熱活化體積則會上升。此外,可以藉由Zerilli-Armstrong構成方程式,來準確的預測此合金在不同溫度及應變速率下的塑變行為。
在微觀方面,由光學顯微鏡之觀測可知6061-T6鋁合金中有絕熱剪切帶形成及晶粒組織形貌的改變,兩者皆受溫度與應變速率的影響;然而在穿透式電子顯微鏡下則可觀測到差排密度隨著應變速率上升和溫度降低而隨之增加。最後結合巨觀與微觀結果證明了塑流應力值隨著差排密度的平方根作線性的增加趨勢,證實了Bailey-Hirsch關係式的存在,也證實了差排密度、塑流應力值、應變速率敏感性係數及熱活化體積有重要的相關性。
In this study, a spit-Hopkinson bar is utilized to study the effect of temperature and strain rate on impact response and microstructural characteristics of 6061-T6 aluminum alloy at different cryogenic temperatures of 0℃, -100℃and -196℃, under strain rates of 1000s-1, 3000s-1 and 5000s-1, respectively.
The experimental results indicate that the mechanical properties are related to temperature and strain rate. At a constant temperature, flow stress and strain rate sensitivity all increase with the increasing strain rate, while the work hardening and thermal activation volume decreases. However, at a constant strain rate, flow stress and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. In addition, the observed impact deformation behavior of this alloy under current testing conditions can be described by the Zerilli-Armstrong equation.
Optical microstructural observations reveal that the formation of adiabatic shear band and morphology of deformed grain of 6061-T6 aluminum alloy are strongly dependent on temperature and strain rate. Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. Based on the experimental mechanical properties and microstructural characteristics, it is found that the correlation between the dislocation density and flow stress obeyed by the Bailey-Hirsch type relation. In addition, the flow stress, strain rate sensitivity and thermal activation volume are also related to the observed dislocation substructure.
1. A. Morita, "Aluminum Alloys–Their Physical and Mechanical Properties (ICAA-6)", 1998, The Japan Institute of Light Metals, Tokyo.
2. J. Staley and D. Lege, " Advances in aluminium alloy products for structural applications in transportation". Le Journal de Physique IV, 1993. 3(C7): p. C7-179-C7-190.
3. E. Starke and A. Csontos, " Proc. 6th Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, ICAA-6, Toyohashi, Japan, 1998". 1998.
4. S.G. Kang, M.G. Kim, S.W. Park, C.G. Kim, and C.W. Kong, " Damage Analysis of a Type 3 Cryogenic Propellant Tank After LN2 Storage Test". Journal of Composite Materials, 2008. 42(10): p. 975-992.
5. S.-G. Kang, M.-G. Kim, and C.-G. Kim, " Evaluation of cryogenic performance of adhesives using composite–aluminum double-lap joints". Composite Structures, 2007. 78(3): p. 440-446.
6. C.-Y. Peng, M. Levine, L. Shido, and R. Leland. " Experimental observations on material damping at cryogenic temperatures". in Proc. of SPIE Vol. 2004.
7. R. Braun, " Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet". Materials and Corrosion, 2005. 56(3): p. 159-165.
8. G.M. Dominguez Almaraz, V.H. Mercado Lemus, and J. Jesús Villalon Lopez, " Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes". Procedia Engineering, 2010. 2(1): p. 805-813.
9. F. MacMaster, K. Chan, S. Bergsma, and M. Kassner, " Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6". Materials Science and Engineering: A, 2000. 289(1): p. 54-59.
10. H. Kolsky, " An investigation of the mechanical properties of materials at very high rates of loading". Proceedings of the Physical Society. Section B, 1949. 62: p. 676.
11. B. Butcher and C. Karnes, " Strain‐Rate Effects in Metals". Journal of Applied Physics, 1966. 37(1): p. 402-411.
12. F.E. Hauser, " Techniques for measuring stress-strain relations at high strain rates". Experimental Mechanics, 1966. 6(8): p. 395-402.
13. G.R. Johnson and W.H. Cook. " A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures". 1983. The Hague, Netherlands: International Ballistics Committee.
14. R.R. Adharapurapu, F. Jiang, K.S. Vecchio, and G.T. Gray III, " Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension–compression asymmetry". Acta materialia, 2006. 54(17): p. 4609-4620.
15. R. Woodward, " The interrelation of failure modes observed in the penetration of metallic targets". International Journal of Impact Engineering, 1984. 2(2): p. 121-129.
16. " 鎂合金在汽車產業之創新應用". in 輕金屬先進技術發展與應用國際研討會. 2003. 金屬中心.
17. J.A. Jacobs and T.F. Kilduff, " Engineering materials technology: structures, processing, properties, and selection ". 1997: Prentice hall. 361.
18. J.E. Hatch, " Aluminum: properties and physical metallurgy ". Vol. 1. 1984: Asm International.
19. E.A. Marquis, D.N. Seidman, and D.C. Dunand, " Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy". Acta Materialia, 2003. 51(16): p. 4751-4760.
20. C.B. Fuller, A.R. Krause, D.C. Dunand, and D.N. Seidman, " Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions". Materials Science and Engineering: A, 2002. 338(1): p. 8-16.
21. N. Kolobnev, " Aluminum-lithium alloys with scandium". Metal science and heat treatment, 2002. 44(7-8): p. 297-299.
22. R.R. Ambriz, G. Barrera, R. Garcia, and V.H. Lopez, " A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA)". Materials & Design, 2009. 30(7): p. 2446-2453.
23. S.C. Bergsma, M.E. Kassner, X. Li, and M.A. Wall, " Strengthening in the new aluminum alloy AA 6069". Materials Science and Engineering: A, 1998. 254(1): p. 112-118.
24. D.J. Chakrabarti and D.E. Laughlin, " Phase relations and precipitation in Al–Mg–Si alloys with Cu additions". Progress in Materials Science, 2004. 49(3): p. 389-410.
25. I. Dutta and S.M. Allen, " A calorimetric study of precipitation in commercial aluminium alloy 6061". Journal of materials science letters, 1991. 10(6): p. 323-326.
26. M. Murayama and K. Hono, " Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys". Acta materialia, 1999. 47(5): p. 1537-1548.
27. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso, " The crystal structure of the [beta]'phase in Al-Mg-Si alloys". Acta materialia, 1998. 46(9): p. 3283-3298.
28. M.H. Jacobs, " The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy". Philosophical Magazine, 1972. 26(1): p. 1-13.
29. Y. Ohmori, L.C. Doan, Y. Matsuura, S. Kobayashi, and K. Nakai, " Morphology and crystallography of β-Mg2Si precipitation in Al-Mg-Si alloys". Materials transactions-JIM, 2001. 42(12): p. 2576-2583.
30. U. Lindholm and L. Yeakley, " High strain-rate testing: tension and compression". Experimental Mechanics, 1968. 8(1): p. 1-9.
31. M.A. Meyers, Dynamic behavior of materials . 1994: Wiley-Interscience.
32. Y. Bai and B. Dodd, Adiabatic shear localization: occurrence, theories and applications . Vol. 2. 1992: Pergamon Press Oxford,, UK.
33. K.F. Graff, Wave motion in elastic solids . 1975: Dover Pubns.
34. W.S. Lee and C.F. Lin, " Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures". Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
35. J.W. Dally and W.F. Riley, "Experimental Stress Analysis", 1991, McGraw-Hill, New York.
36. K. Oi, " Transient response of bonded strain gages". Experimental Mechanics, 1966. 6(9): p. 463-469.
37. J.D. Campbell, " Dynamic plasticity: macroscopic and microscopic aspects". Materials Science and Engineering, 1973. 12(1): p. 3-21.
38. D. Klahn, A.K. Mukherjee, and J.E. Dorn, " Proceedings of the 2nd International Conference on the Strength of Metals and Alloys". Vol. III, ASM, 1970: p. 951.
39. J.D. Campbell and A.R. Dowling, " The behaviour of materials subjected to dynamic incremental shear loading". Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
40. A. Seeger, " Dislocation and Mechanical Properties of Crystals". Philosophical magazine, 1955. 46: p. 1194-1217.
41. H. Conrad, " Thermally activated deformation of metals". JOM, 1964. 16(7): p. 582-588.
42. M.A. Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H.H. Fu, " Constitutive description of dynamic deformation: physically-based mechanisms". Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
43. W.G. Ferguson, A. Kumar, and J.E. Dorn, " Dislocation damping in aluminum at high strain rates". Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
44. U. Lindholm and L. Yeakley, " Dynamic deformation of single and polycrystalline aluminium+". Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
45. J.D. Campbell and W.G. Ferguson, " The temperature and strain-rate dependence of the shear strength of mild steel". Philosophical Magazine, 1970. 21(169): p. 63-82.
46. P. Ludwik, "Elemente der Technologischen Mechanik Springer-Verlag OHG", 1909, Berlin. p. 32.
47. L.E. Malvern, B.U.D.o.A. Mathematics, U.S.O.o.N. Research, and U.S.N.D.B.o. Ships, "The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect", 1949, Division of Applied Mathematics, Brown.
48. L.W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K.P. Staudhammer, " A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study". Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
49. F.J. Zerilli and R.W. Armstrong, " Dislocation‐mechanics‐based constitutive relations for material dynamics calculations". Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
50. F.J. Zerilli and R.W. Armstrong, " Constitutive equation for hcp metals and high strength alloy steels". High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
51. D. Umbrello, R. M’saoubi, and J. Outeiro, " The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel". International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
52. P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro, and P.M.S.T. de Castro, " Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison". Theoretical and Applied Fracture Mechanics, 2008. 50(2): p. 81-91.
53. D.R. Curran, L. Seaman, and D.A. Shockey, " Linking dynamic fracture to microstructural processes". Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
54. U.S. Lindholm, " High strain rate tests". Techniques of metals research, 1971. 5(Part 1): p. 199.
55. W.S. Lee and T.H. Chen, " Dynamic Deformation Behaviour and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy". Materials Transactions, 2008. 49(6): p. 1284-1293.
56. S. Esmaeili, L.M. Cheng, A. Deschamps, D.J. Lloyd, and W.J. Poole, " The deformation behaviour of AA6111 as a function of temperature and precipitation state". Materials Science and Engineering: A, 2001. 319: p. 461-465.
57. B. Viguier, " Dislocation densities and strain hardening rate in some intermetallic compounds". Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
58. D. Chu and J.W. Morris, " The influence of microstructure on work hardening in aluminum". Acta materialia, 1996. 44(7): p. 2599-2610.
59. U. Andrade, M. Meyers, and A.H. Chokshi, " Constitutive description of work-and shock-hardened copper". Scripta Metallurgica et Materialia;(United States), 1994. 30(7).
60. L. Shi and D. Northwood, " The mechanical behavior of an AISI type 310 stainless steel". Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
61. J.M. Holt, H. Mindlin, and C.Y. Ho, " Structural alloys handbook ". 1994: CINDAS/Purdue University.
62. R. Nandan, " Computational modeling of heat transfer and visco-plastic flow in friction stir welding ". 2008: ProQuest.
63. E. Marquardt, J. Le, and R. Radebaugh, " Cryogenic material properties database". Cryocoolers 11, 2002: p. 681-687.
64. R.K. Ham, " The determination of dislocation densities in thin films". Philosophical Magazine, 1961. 6(69): p. 1183-1184.
65. Y. Tomota, P. Lukas, S. Harjo, J.H. Park, N. Tsuchida, and D. Neov, " In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation". Acta materialia, 2003. 51(3): p. 819-830.
66. M.F. Giordana, I. Alvarez-Armas, and A. Armas, " Microstructural characterization of EUROFER 97 during low-cycle fatigue". Journal of Nuclear Materials, 2012. 424(1–3): p. 247-251.
67. N. Hansen and X. Huang, " Microstructure and flow stress of polycrystals and single crystals". Acta materialia, 1998. 46(5): p. 1827-1836.
68. M. Kassner, " A case for Taylor hardening during primary and steady-state creep in aluminium and type 304 stainless steel". Journal of Materials Science, 1990. 25(4): p. 1997-2003.
69. W.-S. Lee and T.-H. Chen, " Effects of strain rate and temperature on dynamic mechanical behaviour and microstructural evolution in aluminium–scandium (Al–Sc) alloy". Materials Science and Technology, 2008. 24(10): p. 1271-1282.
70. W.-S. Lee and C.-F. Lin, " Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain". Metallurgical and Materials Transactions A, 2002. 33(9): p. 2801-2810.
71. S. Nemat-Nasser and Y. Li, " Flow stress of f.c.c. polycrystals with application to OFHC Cu". Acta Materialia, 1998. 46(2): p. 565-577.
72. G.T. Gray Iii, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov, " Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr". Nanostructured Materials, 1997. 9(1–8): p. 477-480.
73. T. Suo, Y. Li, F. Zhao, X. Fan, and W. Guo, " Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges". Mechanics of Materials, 2013. 61(0): p. 1-10.
74. W.G. Guo, X.Q. Zhang, J. Su, Y. Su, Z.Y. Zeng, and X.J. Shao, " The characteristics of plastic flow and a physically-based model for 3003 Al–Mn alloy upon a wide range of strain rates and temperatures". European Journal of Mechanics - A/Solids, 2011. 30(1): p. 54-62.