| 研究生: |
唐志舜 Tang, Zhi-Shun |
|---|---|
| 論文名稱: |
運用掃描探針顯微鏡量測複合懸臂樑類鑽碳膜微機械性質之研究 The Use of Scanning Probe Microscopy to Evaluate the Mechanical Properties of Diamond-Like Carbon Film Deposited on the Cantilever Beam |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 類鑽碳 、楊氏模數 、殘留應力 、懸臂樑 |
| 外文關鍵詞: | cantilever beam, Young's modulus, diamond-like carbon, residual stress |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於利用三種不同方式的薄膜機械性質檢測技術,對厚度範圍在30~100nm的類鑽碳薄膜進行楊氏模數的量測實驗。第一種方式,我們使用奈米壓痕試驗來計算類鑽碳薄膜的楊氏模數與硬度值。第二種方式我們使用掃描探針顯微鏡(Scanning Probe Microscopy,SPM),利用鑽石探針對鍍於矽基材上的薄膜樣品進行接觸負載試驗,配合彈性接觸變形理論以計算出類鑽碳膜之楊氏模數。第三種方式為本論文所研究的重點,我們以Nanosensor製造的矽探針懸臂樑為基底,在其上鍍製不同厚度之類鑽碳膜;同時配合探針顯微鏡對類鑽碳複合懸臂樑結構進行負載變形實驗,以得到類鑽碳膜的楊氏模數值。
將此三種方式所得之類鑽碳楊氏模數結果進行分析,發現當薄膜厚度極低時,壓痕試驗所得結果易受到底材效應的影響而呈現偏低的趨勢。而以探針顯微鏡對樣品之接觸負載實驗結果,可知厚度對楊氏模數的影響並不明顯,但表面粗糙度越大時,量測結果的誤差範圍也越高。而使用類鑽碳複合懸臂樑進行負載實驗時,則需考慮到殘留應力的效應、懸臂樑尺寸的估算誤差、以及不同量測位置等因素對楊氏模數的影響;當量測鍍膜應力較大的薄膜試件時,殘留應力有可能導致懸臂樑結構的降伏。這些因素使得以懸臂樑負載模式進行薄膜楊氏模數檢測時,在使用條件受到相當的侷限。
There are three methods developed to determine the Young’s modulus of DLC thin films with thickness of 30~100nm experimentally in this study. The first method is nanoindentation used to determine the Young’s modulus and hardness of DLC films. The second method is contact test performed by a SPM (Scanning Probe Microscope) with a probe made of diamond. In the second method, the theory about elastic contact deformation is the basis of determination. The third method, the point of this study, is deformation test of cantilever which is coated DLC film with different thickness on the silicon substrate by Nanosensor.
Through comparison of the analysis by these three methods, the Young’s modulus obtained by nanoindentaion is observed to go a lower value due to the effect of the substrate as the film is very thin. And the results obtained by SPM shows its invariant to film thickness; however, the error of measurement is greater as the sample surface is rougher. For the third method, several effects, such as residual stress, size of the cantilever, position of loading…etc, are considered. Especially for the effect of residual stress, the cantilever could be yielded before loading. The above effects constrain the operating conditions in using the third method.
1. K. E. Petersen and C. R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” J. Appl. Phys. Vol. 50, 1979. pp. 6761-6166.
2. Stefan Johansson and Jan-Ake Schweitz, “Fracture testing of silicon microelements in situ in a scanning electron microscope,” J. Appl. Phys. Vol. 83, 1988. pp. 4799-4803.
3. T.P. Weihs, S.Hong, J.C.Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams : A new technique for testing the mechanical properties of thon films,” J. Mater. Res. Vol3. No.5, Sep/Oct, 1988, pp.931-942.
4. W. Fang and J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” J. Micromech. Microeng. 6, 1996. pp. 301–309.
5. C. Serre, P. Gorostiza, A. P´erez-Rodr´ýguez, “Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,” Sensors and Actuators, A.67 1998, 215-219.
6. R. Schwaiger et al, “Analyzing the mechanical behavior of thin films,” J. Mater. Res., Vol. 19, No. 1, Jan 2004. pp. 315-324.
7. W. N. Sharpe, Jr., Bin Yuan, and Ranji Vaidyanathan, “Measurement of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon,” Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan, 1997. pp. 424-429.
8. J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan*, R. J. Hohlfelder, C.I.H, “Developing a New Material for MEMS: Amorphous Diamond,” Mat. Res. Soc. Symp. Proc. Vol. 657, 2001. EE.7.1.1-EE.7.1.8
9. M. P. de Boer, N. F. Smith, M. B. Sinclair, M. S. Baker, Fernando Bitsie, “Microdiagnostic Lab on a Chip,” SANDIA REPORT, 2002.
10. Y. ISONO, T. NAMAZU, N. TERAYAMA, T. TANAKA, “Mechanical Characterization of Sub-Micrometer Thick DLC Films by AFM Tensile Testing for Surface Modification in MEMS. ” Proc. of the 15th IEEE International Conference on MEMS 2002, IEEE, pp. 431-434, 2002.
11. K. L. Johnson,Contact mechanics,Combridge University Press, 1985.
12. W.C. Oliver, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., Vol. 7, No. 6, 1992, pp. 1564-1583.
13. J.S. Field, M.V. Swain, “A Simple Predictive Model for Spherical Indentation,” J. Mater. Res., Vol.8, No. 2, 1993, pp.297-306.
14. D. Newey, M.A. Wilkins and H.M. Pollock, ”An ultra-low-load penetration hardness tester,” J. Phys. E. Sci. Instrum. Vol. 15, 1982, pp.119-122.
15. J.B. Pethica, R. Hutchings and W.C. Oliver, Philosophical Magazine A, Vol. 48, 1983, pp.593-606.
16. R.W. Armstrong, H. Shin and A.W. Ruff, “Elastic/Plastic Effects During Very Low-Load Hardness Testing of Copper,” Acta Metall. Mater. Vol. 43, No. 3, 1995, pp. 1037-1043.
17. S.M. Hues. et al, “Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy,” Rev. Sci. Instrum. Vol.65 No.5, 5, 1994. pp. 1561-1565.
18. T.Y. Tsui, W.C. Oliver and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy,”J. Mater. Res., Vol. 11, 1996, pp. 752-759.
19. A. Bolshakov, W.C. Oliver and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations,” J. Mater. Res., Vol. 11, 1996, pp. 760-768.
20. S. Suresh and A.E. Giannakopoulos, "A New method for Estimating Residual Stresses by Instrumented Sharp Indentation", Acta Materialia, Vol.16, October 1998, pp. 5755-5767.
21. S. Carlsson and P.L. Larsson, “On the Determination of Residual Stress and Strain Field by Sharp Indentation Testing. Part I: Theoretical and numerical Analysis,” Acta mater. Vol. 49, 2001, pp. 2179-2191.
22. R.T. Howe and R.S. Muller, “Stress in polycrystalline and amorphous silicon thin films,” J. Appl. Phys. Vol. 54, 1983, pp. 4674-4675.
23. P.H. Townsend and D.M. Barnett, “Elastic relationships in layered composite media with approximation for the case of thin film s on a thick substrate,” J. Appl. Phys. Vol. 62, 1987, pp. 4438-4444.
24. W. Fang, Hsin-Chung Tsai, Chun-Yen Lo, “Determining thermal expansion coefficients of thin films using micromachined cantilevers,” Sensors and Actuators. Vol. 77, 1999, pp. 21–27.
25. S. Aisenberg and R. Chabot, “Ion beam deposition of thin films of Diamond-like carbon,” J.Appl.Phys, Vol.42, 1971, pp.2953-2958.
26. Hugh O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, 1993.
27. H.S. Nalwa, Handbook of Thin Film Materials : Deposition and Processing of Thin Films, Vol2, Academic Press, L.A, California, USA, 2002.
28. D. Neerinck, P. Persoone, M. Sercu, A. Goel, C. Venkatraman, D. Kester, C. Halter, P. Swab and D. Bray, “Diamond-Like Nanocomposite Coating for Low-Wear and Low-Friction Applications in Humid Environments,” Thin Solid Films, Vol. 317, 1998, pp. 402-404.
29. A. Grill and V. Patel, “Effects of Bias and Inert Gas on Properties of Diamond-Like Carbon Deposited by D.C. PACVD,” Diamond and Related Materials, Vol. 4, 1994, pp. 62-68.
30. F. Demichelis, X.F. Rong, S. Schreiter, A. Tagliaferro and C.D. Martino, “Deposition and Characterization of Amorphous Carbon Nitride Thin Films,” Diamond and Related Materials, Vol. 4, 1995, pp. 361-365.
31. M. Diani, A. Mansour, L. Kubler, J.L. Bischoff and D. Bolmont, Diamond and Related Materials, Vol. 3, 1994, p.264.
32. Shigeki Hoshino, “Mechanical Properties of Diamond Like Carbon Films,” J. Appl. Phys. Vol. 65, No.5, 1 March 1989, pp. 1918-1922.
33. X. Jiang, K. Reichelt, B. Stritzker, “Mechanical Properties of a-C:H Films Prepared by Plasma Decomposition of C2H2,” J. Appl. Phys. Vol. 68, No.3, 1 August 1990, pp. 1018-1022.
34. Shi Xu, B. K. Tay, H. S. Tan, Li Zhomg, and Y. Q. Tu, “Properties of Carbon Ion Deposited Tetrahedral Amorphous Carbon Films as a Function of Ion Energy,” J. Appl. Phys. Vol. 79, No.9, 1 May 1996, pp. 7234-7240.
35. T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, and D. M. Follstaedt, “Thick Stress-free Amorphous-tetrahedra l Carbon Films with Hardness near that of Diamond,” J. Appl. Phys. Lett. Vol. 71, No. 26, 29 December 1997, pp. 3820-3822.
36. R. O. Dillon, AbbasAli, N. J. Ianno, and A. Ahmad, “Sound Velocity and Young’s modulus in Plasma Deposited Amorphous Hydrogenated Carbon,” J. Vac. Sci. Technol. A, Vol 19, No.6, Nov/Dec 2001, pp.2826-2830.
37. Zhenghao Gan, Yuebin Zhang, Guoqing Yu, C. M. Tan, S. P. Lau, and B. K. Tay, “Intrinsic Mechanical Properties of Diamond-like Carbon Thin Films Deposited by Filtered Cathodic Vacuum Arc,” J. Appl. Phys, Vol. 95, No.7, 1 April 2004, pp. 3509-3515.
38. T. Chudoba, “Young’s Modulus Measurements on ultra-thin coatings,” J. Mater. Res., Vol.19, No. 1, Jan 2004, pp. 301-314.
39. Z. Zheng, ADHESION MECHANICS OF THIN-FILM INDENTATION,School of Mechanical & Production Engineering Nanyang Technology University, Singapore.
40. G. Quate, C.F. Gerber, “Atomic Force Microscope,” Physical Review Letters, 56, 1986. pp.930–933.
41. G.S. Blackman, C.M. Mate, & M.R. Philpott, “Interaction Forces of a Sharp Tungsten Tip with Molecular Films on Silicon Surface”. Physical Review Letters, Vol. 65, 1990, pp.2270-2273.
42. B. Bhushan, S. Sundararajan, “Micro/Nanoscale Friction and Wear Mechanisms of Thin Films Using Atomic Force and Friction Force Microscopy,” Acta Materialia, Vol. 46, 1998, pp.3793-3840.
43. J.P. Beale, R.F.W. Pease, “Apparatus for studying ultrasmall contacts,” Proceedings of the 38 th IEEE Holm Conference on Electrical Contacts, Philadelphia , 1992, pp.45-49.
44. Jian Lu, Handbook of Measurement of Residual Stresses, Fairmont Press, Inc. Lilburn, GA, USA, 1996.
45. R.C. Hibbeler, Mechanics of Materials 3rd, Prentice Hall, Inc. 1997.
46. 余樹貞,晶體之結構與性質,渤海堂文化公司, 1993.
47. William D. Callister,Jr. Materials Science And Engineering 4th , John Wiley & Sons, Inc. 1997.
48. Marc Madou, Fundamentals of microfabrication, Boca Raton, Fla /CRC Press/c1997/New York
49. Dawn A. Bonnell, Sanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, Wiley-VCH, 2000.
50. 伍秀菁, 汪若文, 林美吟編輯,微機電系統技術與應用,行政院國家科學委員會精密儀器中心,2003年
51. B. Bushing, Handbook of Micro/Nano Tribology, CRC Press, 1995.
52. Nanosensors Corp., Product Guide, http://www.nanosensors.com/
53. G.M. Pharr, W.C. Oliver and F.R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., Vol. 7, 1992, pp. 613-617.
54. Hugh O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, 1993.
55. Hysitron Incorporated, http://www.hysitron.com/
56. Milton Ohring, The Material Science of Thin Film, Academic Press, Inc, San Diego , 1992.
57. W. Buckel, J. Vac. Sci. Tech. 6 (1969) , p.606.
58. 黃承揚,薄膜應力及其微觀結構分析,國立中央大學光電所,碩士論文,1999
59. C. V. Thompson and R. Carel, J. Mech. Phys, Solids, Vol.44, No.55 1996, p.657.
60. 葉伍峰,微機電薄膜之材料機械性質研究,國立台灣大學應用力學研究所,碩士論文,2003年
61. G. Meyer and N.M. Amer, “Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope ,” Appl. Phys. Lett. Vol.57, 1990, pp.2089-2097.
62. 潘錦昌,低溫離子束沈積含氮類鑽碳薄膜之微-奈米機械、材料性質及磨潤性能之研究,國立成功大學機械工程學系碩博士班,碩士論文,2002
63. 陳冠維,掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測,國立成功大學機械工程學系碩博士班,碩士論文,2003
64. Anthiny C. Fischer-Cripps Nanoindentation, Springer, 2004.
65. A.C. Ferrari, J. Robertson,“Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, Vol. 61, No.20, 15 May, 2000, pp.14 095 – 14 107.