簡易檢索 / 詳目顯示

研究生: 李士宗
Li, Shih-Zong
論文名稱: 光散射法於自動微組裝系統之設計實現
Light Scattering Method in Design and Implementation of Automatic Microassembly System
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 151
中文關鍵詞: 微組裝系統設計流程圖PRBM建模微作用力光散射函數光散射成像品質檢測
外文關鍵詞: Design flow chart of micro-assembly system, PRBM, Stiction forces, Light scattering function, Light scattering imaging, quality inspection
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要應用光散射成像於微組裝系統的設計,目標應用公設設計理論、DFMEA與OPV建立微組裝系統設計流程圖;本文以微夾具之夾持力、微物件之品質檢測系統與組合件表面之光散射現象為分析重點。
    運用PRBM建立微夾爪之數學模型,模擬其夾持力並以ANSYS驗證;分析微作用力於微組裝系統之影響;以影像處理技術之邊緣偵測與曲線擬合建立微物件品質檢測演算法;建立光散射強度量測儀量測組合件表面之光散射函數;最後將微組裝系統之設計方案以模擬夾持力與光散射函數進行分析,以評估設計方案可行性;並藉由降低環境濕度以改良夾爪釋放成功率;最後,將微物件品質檢測演算法加入微組裝系統,驗證該系統可透過影像伺服排除不合格物件並完成組裝,物件直徑88 μm、長1 mm,組合件孔徑100 μm,其間隙比為0.12。

    In this paper, light scattering imaging is applied to the design of micro-assembly system. The design flow chart of micro-assembly system is established by utilizing axiomatic design, DFMEA and OPV. The analysis of present research focuses on the gripping force, quality inspection system, and light scattering phenomenon in the micro-assembly system.
    A mathematical model of micro gripper is built by using PRBM, which is verified by ANSYS. The effects of stiction forces are analyzed in micro-assembly system. The algorithm of quality inspection system is developed by using both edge detection and curve fitting of image processing. The light scattering intensity measurement instrument is constructed and to measure the light scattering function of surface of assembly part. Finally, the result of design case is analyzed through simulation of gripping force and light scattering function, to assess the feasibility of the design. The success rate of gripper release is improved by reducing the humidity. Finally, the quality inspection system is included in the micro-assembly system to verify the performance of excluding the unqualified object in the assembly of micro peg of diameter 88μm and hole diameter 100μm, with clearance ration 0.12.

    摘要 I Abstact II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1光源與成像配置 2 1-3.2機構與運動架構 8 1-3.3微組裝系統設計 16 1-4 研究目標與方法 20 1-5 本文架構 22 第二章 微夾爪建模與夾持力分析 23 2-1 撓性微夾爪結構 23 2-2 PRBM與夾持建模 24 2-2.1撓性軸承分析 25 2-2.2微夾持器之位移增益分析 26 2-2.3夾持力分析 27 2-3 PRBM模型之夾持分析 30 2-4 結果與討論 31 2-4.1赫茲模型驗證 31 2-4.2 PRBM模型驗證 33 2-5 本章總結 36 第三章 微作用力分析與微物件品質篩選 37 3-1 微作用力介紹 37 3-1.1夾持環境之微作用力 37 3-1.2微作用力分析 39 3-1.3微作用力之分析結果 44 3-1.4減少微作用力影響之方針 51 3-2 微組裝物件品質篩選 54 3-2.1邊緣偵測 54 3-2.2曲線線性擬合 56 3-2.3品質檢測 58 3-3本章總結 61 第四章 光散射分析與BSDF量測 62 4-1 光散射原理 62 4-1.1 Harvey-Shack模型 63 4-1.2 BSDF模型 65 4-1.3 ABg模型 67 4-2 光散射強度量測儀 69 4-2.1 量測概念 69 4-2.2量測儀設計 72 4-2.3量測儀規格與架構 74 4-3 量測結果 78 4-4 本章總結 80 第五章 自動微組裝系統設計 81 5-1 微組裝系統分析 81 5-1.1 夾具系統 83 5-1.2 進料系統 86 5-1.3 移動平台系統 86 5-1.4 量測系統 87 5-1.5 控制系統 88 5-2 設計理論 89 5-2.1公設設計 89 5-2.2 設計失效模式及後果分析 97 5-2.3 運轉過程變數 100 5-3 性能分析與設計流程 100 5-3.1 性能指標 100 5-3.2 設計依據與考量因素 102 5-3.3 設計流程圖 104 5-4 設計與分析自動化微組裝系統 108 5-5 本章總結 119 第六章 微組裝系統整合與驗證 120 6-1 系統整合 120 6-1.1 硬體整合 120 6-1.2軟體整合 122 6-2 微組裝系統分析 124 6-2.1微組裝系統設計分析 124 6-2.2 微組裝系統之微作用力改良 128 6-2.3 微組裝系統之組裝成功率改良 130 6-3 品質檢測系統驗證 131 6-3.1驗證結果 131 6-3.2實驗分析 138 第七章 結論與未來展望 140 7-1 結論 140 7-2 未來展望 141 參考專利文獻 143 參考文獻 144 附錄A 150 A-1 微夾持器之安裝流程 150 自述 151

    參考專利文獻
    [US5545291] J.S Smith and H.J.J. Yeh, “Method for fabricating self assembling microstructure” patent number: US5545291, 1996.
    [US5355577] M.B. Smith, “Method and apparatus for the assembly of microfabricated devices” patent number: US5355577, 1994.

    參考文獻
    [1] H. Xie, L. Chen, L. Sun, and W. Rong, “Hybrid vision-force control for automatic assembly of miniaturized gear system,” IEEE International Conference on Robotics and Automation, pp. 1368-1373, 2005.
    [2] K. B. Yesin and B. J. Nelson, “A CAD model based tracking system for visually guided microassembly,” Journal of Robotica, Vol.23, pp. 409-418, 2005.
    [3] G. Yang, J.A. Gaines, and B.J. Nelson, “Optomechatronic design of microassembly systems for manufacturing hybrid microsystems,” IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1013-1023, 2005.
    [4] L. Wang, J. K. Mills, and W. L. Cleghorn, “Automatic Microassembly Using Visual Servo Control,” IEEE Transactions on Electronics packaging manufacturing, Vol. 31, pp. 316-325, 2008.
    [5] A.N. Das, Ping Zhang, W.H. Lee, D. Popa, and H. Stephanou, ”μ3: Multiscale, deterministic micro-nano assembly system for construction of on-wafer microrobots,” IEEE International Conference on Robotics and Automation, pp. 461-466, 2007.
    [6]林敬祐, “ 影像伺服微物件姿態調整與定位組裝系統之發展,” 國立成功大學機械工程學系碩士論文, 2009.
    [7] B. Tamadazte, N.L.-F. Piat, and S. Dembélé, “Robotic Micromanipulation and Microassembly Using Monoview and Multiscale Visual Servoing,” IEEE/ASME Transactions on Mechatronics, Vol. 16, pp. 277-287, 2010.
    [8] Centre Suisse d’Electronique et de Microtechnique, “Microfactory,” Untere Gründlistrasse 1, CH-6055 , 2002, from http://www.csem.ch/site/
    [9] V. Sariola, M. Jaaskelainen, and Q. Zhou, “Hybrid microassembly combining robotics and water droplet self-alignment,” IEEE Transactions on Robots, Vol. 26, pp. 965-977, 2010.
    [10] S. Fatikow, ”Design and control of flexible microrobots for an automated microassembly desktop-station,” ProcSPIE on Microrobotics and Microsystem Fabrication, Vol. 3202, pp. 66-77, 1997.
    [11] S. Fatikow, J. Seyfried, St. Fahlbusch, A. Buerkle, and F. Schmoeckel, “A flexible microrobot-based microassembly station,” Journal of intelligent and robotic systems, Vol. 27, pp. 135-169, 2000.
    [12] 徐泰然編輯, “ 微機電系統封裝,” 北京市:清華大學出版社, 2006.
    [13] C. Clévy, A. Hubert, and N. Chaillet, “Flexible micro-assembly system equiped with an automated tool changer,” Journal of Micro-Nano Mechatronics, Vol. 4, pp. 59-72, 2008.
    [14] 何正榮, 葉哲良, 高崎鈞, 和潘煬濬, “ IC晶片高速組裝設備機構原理特性研究,” 機械工業雜誌, 273期, 2005.
    [15] T. Tojo, K. Yamanaka, B.P. Singh, K. Onozawa, D. Ueda, I.Soga, K. Maezawa, and T. Mizutani, “Dual-wavelength high-power laser diodes fabricated by selective fluidic self-assembly,” Journal of Application Physics, Vol. 44, pp. 2568-2571, 2005.
    [16] R.S. Fearing, “Survey of Sticking Effects for Micro Parts Handling,” Proc. IROS '95, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol. 2, pp. 212-217 , 1995.
    [17] R. Murthy, A. Das, D. Popa, “Multiscale Robotics Framework for MEMS Assembly,” International Conference on Control, Automation, Robotics and Vision, pp. 1-6, 2006.
    [18] 李士宗和張仁宗, “以擬連桿建模分析撓性微夾爪之夾持力,” 中國機械工程學會第二十七屆全國學術研討會論文集, 2010.
    [19] 陳泰成, “微組裝系統影像伺服建模與測試,” 國立成功大學機械工程學系碩士論文, 2002.
    [20] J.M. Paros, L. Weisboro, “How to design flexure joint,” Machine Design, 1965, pp. 151-156.
    [21] K.L. Johnson, Contact Mechanics, Cambridge University Press, 1985.
    [22] C. M. Li, C. Z. Wang, “effect of moisture on the contact between a cylinder and a parallel plate,” the journal of adhesion, Vol. 81, pp 1049-1075, 2005.
    [23] M. K. Chaudhury, T. Weaver, C. Y. Hui, E. J. Kramer, “Adhesive contact of a cylindrical lens and flat sheet,” Journal of Applied Physics., Vol 80, pp. 30–37, 1996.
    [24] Isralachvili, J,N. Intermolecular and Surface Forces, 2nd ed., Academic Press, 1994.
    [25] J. Dai, “Adhesion and Removal of NanoParticles on Silica Wafer by Dry Cleaning Method,” Basic Research, Vol. 4, no. 3, pp. 4-8, 2007.
    [26] Q. Wei, D. A. R.Dalvit, F. C. Lombardo, “ Results from electrostatic calibrations for measuring the Casimir force in the cylinder-plane geometry,” Phys. Rev., A81, 052115, 2010.
    [27] R. Legtenberg, A. C. Tilmans, J. Elders, and M. Elwenspoek, “Stiction of surface icromachined structures after rinsing and drying: model and investigation of adhesion mechanisms,” Sensors and Actuators A, pp. 230–238, 1994.
    [28] Y. I. Rabinovich, J. J. Adler, M. S. Esayanur, A. Ata, R.K. Singh, and B.M. Moudgil, “Capillary forces between surfaces with nanoscale roughness,” Advances in Colloidand Interface Science, pp. 213-230, 2002.
    [29]張仁宗和李士宗, “光散射函數量測於微光機電系統之應用,” 成功大學機械工程學系, 2011.
    [30]J.E. Harvey, “Light-Scattering Properties of Optical Surfaces,” Ph.D. Dissertation, U.Arizona.1976.
    [31]J.E. Harvey, C.L. Vernold, “Transfer function characterization of scattering surfaces: Revisited,” Proc. SPIE, Vol. 3141, pp. 114-127, 1997.
    [32]吳貴能, “BSDF參數及量測技術介紹,” 量測資訊, 109期, 5, 2006.
    [33]財團法人國家實驗研究院, “中華民國科學技術年鑑99年版,” 2010.
    [34] Y. J. Shen, Q. Z. Zhu and M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surface,” Review of scientific instruments, Vol. 74, No. 11, 2003.
    [35] X. Feng, J. R. Schott, and T. Gallagher, “Comparison of methods for generation of absolute reflectance factor values for BRDF studies,” Appl. Opt., Vol. 32, No. 7, 1993.
    [36] J. E. Proctor, P. Y. Barnes, “NIST High Accuracy Reference Reflectometer -spectrophotometer,” J. Res Natl. Inst. Stand. Technol. , Vol. 101, No. 5, 1996.
    [37]S. Roy, S. Y. Bang, M. F. Modest and V. S. Stubican, “Measurement of spectral, directional reflectivities of solids at high temperatures between 9 and 11 μm,” Appl. Opt., Vol. 32, No. 19, 1993.
    [38]B. T. Barnes, “Optical Constants of Incandescent Refractory Metals,” Journal of the optical society of america, Vol. 56, No. 11, 1966.
    [39]J. R. Zaworski, J. R. Welty, and M. K. Drost, “Measurement and use of bi-directional reflectance,” Int. J. Heat Mass Transfer, Vol. 39, No. 6, 1996.
    [40]D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven and H. Edgar, “Reflectometer for Measuring the Bidirectional Reflectance of Rough Surface,” Appl. Opt., Vol. 37, No. 16, 1998.
    [41]S. Roy, S. Y. Bang, M. F. Modest and V. S. Stubican, “Measurement of spectral, directional reflectivities of solids at high temperatures between 9 and 11 μm,” Appl. Opt., Vol. 32, No. 19, 1993.
    [42]B. T. Barnes, “Optical Constants of Incandescent Refractory Metals,” Journal of the optical society of america, Vol. 56, No. 11, 1966.
    [43] M. Tichem, D. Lang, and B. Karpuschewski, “A classification scheme for quantitative analysis of micro-grip principles,” Assembly Automation, Vol. 24, pp. 88-93, 2004.
    [44] 林柏伸, “微組裝系統之光機分析與驗證,” 成功大學機械工程學系碩士論文, 2010.
    [45] N.P. Suh, “The principles of design,” Oxford University Press, New York, pp. 811-833, 1990.
    [46] 許志成, “形狀記憶合金驅動具力量感測器微夾爪之閉回路控制,” 成功大學機械工程學系碩士論文, 2007.

    下載圖示 校內:2013-08-01公開
    校外:2013-08-01公開
    QR CODE