簡易檢索 / 詳目顯示

研究生: 張家媛
Chong, Chia-Yen
論文名稱: 微衛星姿態估測及判定次系統之設計、實現和驗證
Design, Implementation and Verification of Microsatellite Attitude Determination and Control Subsystem
指導教授: 苗君易
Miau, Jiun-Jih
共同指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 120
中文關鍵詞: CKUTEX微衛星姿態判定軟体迴路模擬程序迴路模擬
外文關鍵詞: CKUTEX, Microsatellite, Attitude Determination, Software-in-the-loop (SIL), Processor-in-the-loop (PIL)
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CKUTEX (Cheng‐Kung University Technology Experimental)衛星係國立成功大學自主發展參拾公斤等級的實驗型微衛星。於衛星姿態判別及控制次系統,主要為提供衛星姿態控制、姿態估測及穩定衛星角速度。
    CKUTEX衛星操作模式主要分為三種:初始模式(Initial mode)、減速模式(Detumbling mode)及正常模式(Normal mode)。在初始模式下,此次系統將利用星載感測器擷取早期軌道資訊進而下傳到地面站作後處理分析。在減速模式時,則運用磁力控制法則來降低及穩定衛星角速度。衛星在正常操作模式下,姿態次系統將開啓姿態判別來估測衛星姿態。
    在初步設計時,本論文運用軟体迴路模擬(Software-in-the-Loop Simulation)設計及驗證系統的架構及參數。於軟體迴路模擬驗證後,採用程序迴路模擬(Processor-in-the-Loop Simulation)驗證姿態判別及控制次系統星上飛行軟體及演算法。軟体迴路模擬係利用Matlab Simulink實現,而程序迴路模擬主要由即時動態模擬器及姿態判別及控制次系統上嵌入式微控制晶片和整合電路所構成。即時動態模擬器主要用於模擬太空環境、軌道資訊、姿態動態、感測器及控制器;姿態判別及控制次系統上嵌入式微控制晶片和整合電路則用來實現衛星姿態判別及控制演算法。最後,藉由程序迴路模擬來驗證整個衛星姿態判別及控制次系統效能,並提出改進方法。

    At NCKU, Taiwan, a 30 kg experimental micro satellite named CKUTEX is being developed. The role of the Attitude Determination and Control Subsystem (ADCS) is to provide attitude control functions, including the detumbling and stabilizing the satellite angular velocity, and as well as estimating the orbit and attitude information during the satellite operation.
    For CKUTEX, the operation of the ADCS consists of three modes which are initialization mode, detumbling mode, and normal modes respectively. During the initialization mode, ADCS collects the early-orbit measurement data from various sensors so that the data can be downlinked to the ground station for further analysis. During the detumbling mode, ADCS implements the magnetic control method to decrease the satellite angular velocity. During normal mode, ADCS provides the attitude determination function for the estimation of the satellite state.
    During the development stage, Software-in-the-Loop (SIL) simulation is used for designing the architecture and parameters of ADCS. In addition of SIL simulation, a Processor-in-the-Loop (PIL) test platform has been set up for the verification test of the designed ADCS hardware. The SIL simulation is achieved by using Matlab software, while PIL test implement a real-time dynamic simulator and controller, as well as some interfacing circuitry. The real-time dynamic simulator is capable of performing simulation of the space environment, orbit dynamic, attitude dynamic, and sensor/actuator models. The controller/estimator is a realization of the embedded controller for attitude determination and control. The CKUTEX employs three sensors including magnetometer, sun sensor, and IMU for attitude determination. The control actions of the CKUTEX are provided by magnetic torque rods.
    At last, the design and performance of ADCS can be verified by the PIL test and some suggestion will be given to improve this subsystem.

    摘要…………………………………………………………………………………I Abstract…………………………………………………………………………………………………………………………………III Acknowledgement……………………………………………………………………………………………………………………V Contents…………………………………………………………………………………………………………………………………VII List of Tables………………………………………………………………………………………………………………………X List of Figures…………………………………………………………………………………………………………………XI Chapter 1 Introduction…………………………………………………………………………………………………1 1.1 Overview……………………………………………………………………………………………………………………………1 1.2 Background………………………………………………………………………………………………………………………1 1.3 Attitude Determination and Control Subsystem……………………………6 1.3.1 ADCS Sensors……………………………………………………………………………………………………………8 1.3.2 ADCS Actuator………………………………………………………………………………………………………10 1.3.3 ADCS Processor……………………………………………………………………………………………………11 1.3.4 ADCS Design and Verification Tools………………………………………………12 1.3.5 Organization…………………………………………………………………………………………………………13 Chapter 2 Satellite & Environment Model…………………………………………………15 2.1 Attitude definitions and conventions………………………………………………15 2.1.1 Direction Cosine Matrix……………………………………………………………………………15 2.1.2 Euler Angles…………………………………………………………………………………………………………18 2.1.3 Quaternion………………………………………………………………………………………………………………19 2.2 Equation of Motions……………………………………………………………………………………………21 2.2.1 Dynamic Equations……………………………………………………………………………………………21 2.2.2 Kinematic Equations………………………………………………………………………………………22 2.2.3 Satellite Rotational Model……………………………………………………………………23 2.3 Coordinate Frames…………………………………………………………………………………………………24 2.3.1 Celestial Coordinate System…………………………………………………………………24 2.3.2 Earth centered inertial frame (ECI)……………………………………………26 2.3.3 Earth centered earth fixed frame……………………………………………………27 2.3.4 Orbit frame……………………………………………………………………………………………………………27 2.3.5 Body frame………………………………………………………………………………………………………………28 2.4 Coordinate Frame Transformation……………………………………………………………29 2.4.1 ECI and ECEF frame transformation…………………………………………………29 2.4.2 ECI and orbit frame transformation………………………………………………31 2.4.3 ECI and body frame transformation…………………………………………………31 2.4.4 Orbit and body frame transformation……………………………………………32 2.5 Keplerian Orbit………………………………………………………………………………………………………32 2.5.1 Orbital elements………………………………………………………………………………………………33 2.5.2 Time system……………………………………………………………………………………………………………35 2.5.3 Position and velocity as a function of time………………………36 2.6 Orbit Perturbations……………………………………………………………………………………………38 2.6.1 Perturbations due to Non-spherical Earth………………………………38 2.6.2 Perturbations due to third body interaction………………………39 2.7 Space Environment Model…………………………………………………………………………………41 2.7.1 Magnetic Field Model (IGRF Model)…………………………………………………42 2.7.1.1 Calculation of Earth Magnetic Field Intensity……………44 2.7.2 The Earth’s Upper Atmosphere Model………………………………………………49 2.7.3 Sun Position Model…………………………………………………………………………………………49 2.8 Disturbance torques……………………………………………………………………………………………52 2.8.1 Gravity-gradient torque……………………………………………………………………………53 2.8.2 Aerodynamic Torque…………………………………………………………………………………………54 2.8.3 Magnetic Disturbance……………………………………………………………………………………56 2.9 Sensor and Actuator Models…………………………………………………………………………57 2.9.1 Gyro………………………………………………………………………………………………………………………………57 2.9.1.1 Gyro Error Model…………………………………………………………………………………………58 2.9.2 Sun Sensor………………………………………………………………………………………………………………61 2.9.3 Magnetometer…………………………………………………………………………………………………………63 2.9.4 Magnetic Torque Rod………………………………………………………………………………………64 Chapter 3 ADCS Design…………………………………………………………………………………………………66 3.1 Attitude Control……………………………………………………………………………………………………66 3.1.1 Magnetic Attitude Control………………………………………………………………………67 3.1.2 B dot Control Law……………………………………………………………………………………………68 3.1.3 Periodic Measurement and Actuation………………………………………………71 3.1.4 Pulse Width Modulation (PWM)………………………………………………………………72 3.2 Attitude Determination……………………………………………………………………………………73 3.2.1 Attitude Determination Algorithm……………………………………………………74 3.2.2 EKF Model…………………………………………………………………………………………………………………75 3.2.3 EKF Implementation…………………………………………………………………………………………79 3.2.4 Filter Tuning………………………………………………………………………………………………………82 3.2.5 Attitude Error Representation……………………………………………………………83 Chapter 4 Verification of ADCS…………………………………………………………………………85 4.1 Verification Tests………………………………………………………………………………………………85 4.1.1 Software-in-the-Loop Testing ……………………………………………………………89 4.1.2 Processor-in-the-Loop Testing……………………………………………………………91 4.1.2.1 Data Monitoring Center…………………………………………………………………………95 4.1.2.2 Space Environment Simulation…………………………………………………………97 4.1.2.3 ADCS Module……………………………………………………………………………………………………100 Chapter 5 Simulation Result………………………………………………………………………………103 5.1 The Simulation of Attitude Determination in SIL and PIL………………………………………………………………………………103 5.1.1 SIL Simulation…………………………………………………………………………………………………105 5.1.2 PIL Test…………………………………………………………………………………………………………………109 5.2 Discussion of the SIL and PIL Results…………………………………………113 Chapter 6 Conclusions………………………………………………………………………………………………115 6.1 Future Research……………………………………………………………………………………………………115 Reference………………………………………………………………………………………………………………………………117 List of Tables Table 2.1: IGRF coefficients for epoch 2010 to 2015…………………45 Table 2.2: Random Noise coefficients…………………………………………………………60 Table 3.1 Summary of EKF Algorithm………………………………………………………………78 Table 5.1 Orbit Elements in SIL and PIL Tests………………………………103 Table 5.2: Satellite model Parameters……………………………………………………104 Table 5.3: Initial Conditions of CKUTEX………………………………………………104 Table 5.4: Initial Conditions of EKF………………………………………………………104 Table 5.5: The Mean and Standard Deviation of the Estimation Error in SIL Test…………………………………………………………………………………………………………109 Table 5.6: The Mean and Standard Deviation of the Estimation Error in PIL Test…………………………………………………………………………………………………………113 List of Figures Figure 1.1: CKUTEX satellite structure and components………………3 Figure 1.2: System Architecture of CKUTEX………………………………………………5 Figure 1.3: ADCS Architecture………………………………………………………………………………6 Figure 1.4: ADCS State Transition……………………………………………………………………8 Figure 1.5: MEMS gyroscope, Magnetometer and sun sensor………10 Figure 1.6: Magnetic torque rod………………………………………………………………………11 Figure 1.7: PIC microcontroller………………………………………………………………………11 Figure 1.8: NI PXI-1042……………………………………………………………………………………………13 Figure 2.1: Satellite Rotational Model in Simulink……………………24 Figure 2.2: The Celestial Coordinate System………………………………………25 Figure 2.3: Definition of ECI Frame……………………………………………………………26 Figure 2.4: Definition of ECEF Frame…………………………………………………………27 Figure 2.5: Definition of Orbit Frame………………………………………………………28 Figure 2.6: Definition of Body Frame…………………………………………………………29 Figure 2.7: Relationship between ECI and ECEF Frame…………………30 Figure 2.8: Keplerian Orbit Elements…………………………………………………………35 Figure 2.9: Elliptical Orbit………………………………………………………………………………35 Figure 2.10: Elliptical orbit and Circumscribed Circle…………38 Figure 2.11: Satellite Position in ECI Frame for 1 Orbital Period…………………………………………………………………………………………………………………………………………41 Figure 2.12: Satellite Velocity in ECI Frame for 1 Orbital Period…………………………………………………………………………………………………………………………………………41 Figure 2.13: Contour maps of total intensity (nT) at 2010.0…………………………………………………………………………………………………………………………………………43 Figure 2.14: Secular variation of total intensity (nT/year) for 2010.0-2015.0……………………………………………………………………………………………………………43 Figure 2.15: Mean Density of Atmosphere as Function of Altitude……………………………………………………………………………………………………………………………………49 Figure 2.16: Celestial Coordinate…………………………………………………………………50 Figure 2.17: Geocentric (ECI) Coordinates……………………………………………52 Figure 2.18: Eclipse Geometry……………………………………………………………………………52 Figure 2.19: Gravity Gradient Disturbance Torque in one Orbital Period……………………………………………………………………………………………………………………54 Figure 2.20: Aerodynamic Disturbance Torque in one Orbital Period…………………………………………………………………………………………………………………………………………55 Figure 2.21: Magnetic Disturbance Torque in one Orbital Period…………………………………………………………………………………………………………………………………………56 Figure 2.22: Allan Deviation Analysis for MEMS Gyro…………………59 Figure 2.23: Angle Random Walk Model…………………………………………………………60 Figure 2.24: Rate Random Walk Model……………………………………………………………61 Figure 2.25: Gyro Error Model……………………………………………………………………………61 Figure 2.26: Sun Sensor Model……………………………………………………………………………63 Figure 2.27: Magnetometer Model………………………………………………………………………64 Figure 2.28: Magnetic Torque Rod Model……………………………………………………65 Figure 3.1: B dot Control Model………………………………………………………………………70 Figure 3.2: Periodic B dot Control Cycle………………………………………………71 Figure 3.3: PWM Signal Generation in Simulink…………………………………72 Figure 3.4: Block Diagram of the system…………………………………………………76 Figure 3.5: Simulation of Attitude Determination of CKUTEX in Simulink……………………………………………………………………………………………………………………………82 Figure 3.6: Attitude Error Representation in Simulink……………84 Figure 4.1: Flowchart of ADCS Design…………………………………………………………88 Figure 4.2: ADCS in SIL Test………………………………………………………………………………89 Figure 4.3: The Architecture of PIL Test………………………………………………92 Figure 4.4: The Platform of PIL Test…………………………………………………………94 Figure 4.5: The Hardware in PIL Test…………………………………………………………95 Figure 4.6: The Simulation Management of PIL Test………………………96 Figure 4.7: Data and Graphs displayed in LabVIEW front panel……………………………………………………………………………………………………………………………………………97 Figure 4.8: System Architecture of PXI-8106 ……………………………………98 Figure 4.9: ADCS Model in LabVIEW…………………………………………………………………99 Figure 4.10: ADCS Circuit board and ADCS Module…………………………100 Figure 4.11: The Coding Structure in PIC32 microcontroller………………………………………………………………………………………………………………101 Figure 5.1: The Real and Estimated Quaternion in SIL test……………………………………………………………………………………………………………………………………………106 Figure 5.2: The Error of the estimated Quaternion in SIL test……………………………………………………………………………………………………………………………………………106 Figure 5.3: The Estimation Error of Euler Angle in SIL test ………………………………………………………………………………………………………………………………………………………107 Figure 5.4: The Estimation Error of Euler Angle in SIL test (zoomed in)…………………………………………………………………………………………………………………………107 Figure 5.5: The Sun Vector in ECI Frame………………………………………………108 Figure 5.6: The Real and Estimated Angular Rates in SIL test……………………………………………………………………………………………………………………………………………108 Figure 5.7: The Error of the Estimated Angular Rates in SIL test……………………………………………………………………………………………………………………………………………109 Figure 5.8: The Real and Estimated Quaternion in PIL test……………………………………………………………………………………………………………………………………………110 Figure 5.9: The Error of the estimated Quaternion in PIL test……………………………………………………………………………………………………………………………………………111 Figure 5.10: The Error of the estimated Euler Angle in PIL test……………………………………………………………………………………………………………………………………………111 Figure 5.11: The Estimation Error of Euler Angle in PIL test (zoomed in)…………112 Figure 5.12: The Real and Estimated Angular Rates in PIL test……………………………………………………………………………………………………………………………………………112 Figure 5.13: The Error of the Estimated Angular Rates in PIL test……………………………………………………………………………………………………………………………………………113

    [1] Juang, J. C., Tsai, Y. F., Tsai, C. T., Jenq, S. T., Tsai, J. R., and Pan, H. P., “CKUTEX – An Experimental Microsatellite by NCKU,” 2010 AASRC Conference, Taoyuan, Taiwan, 2010.
    [2] Jenq, S. T., Huang, J. Y., Huang, T. J., Juang, J. C., Miau, J. J., and Jang, J. P., “Structural Vibration Modal Analysis for the CKUTEX Micro-Satellite,” 2010 AASRC Conference, Taoyuan, Taiwan, 2010.
    [3] Weng, L. D., Chang, J. R., Juang, J. C., and Miau, J. J., “Thermal Analysis, Design and Verification of the Micro-Satellite Electrical Subsystems,” 2010 AASRC Conference, Taoyuan, Taiwan, 2010
    [4] Tsai, Y. F., Chang, C. C., Juang, J. C., and Lin, C. T., “Implementation and Test of a Space-borne GPS Receiver Payload of Micro Satellite,” 2010 International Symposium on GPS/GNSS, Taipei, Taiwan, 2010
    [5] MEMSENSE: MAG 3, Triaxial Magnetometer, Acceleration and Gyroscope Analog
    Inertia Sensor datasheet, available at:
    http://www.memsense.com/index.php/Product-Pages/magdsh.html
    [6] Satellite Services LTD: Fine Sun Sensor datasheet, available at:
    http://www.satserv.co.uk/Products_ADCS_Sensors_FineSunSensor.html
    [7] Honeywell: Smart Digital Magnetometer HMR2300 datasheet, available at:
    http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HMR2300.pdf
    [8] Stras Space: Micro Magnetic Torque Rod datasheet, available at:
    http://www.stras-space.com/StrasSpace-MicroTorquer.pdf
    [9] Microchip: PIC24FJ128GA010 datasheet, available at:
    http://ww1.microchip.com/downloads/en/devicedoc/39747D.pdf
    [10] Microchip: PIC32MX360F512L datasheet, available at:
    http://ww1.microchip.com/downloads/en/DeviceDoc/61143H.pdf
    [11] Celestial Coordinate System, available at:
    http://csep10.phys.utk.edu/astr161/lect/time/coordinates.html
    [12] Reda, I., and Andreas, A., “Solar Position Algorithm for Solar Position Algorithm for Solar Radiation Applications,” NREL Report No. TP-560-34302, June 2003.
    [13] Vinti, J. P., “Orbital and Celestial Mechanics,” American Institute of Aeronautics & Ast, Reston, Verginia, 1998
    [14] Wertz, J. R., “Spacecraft Attitude Determination and Control”, Kluwer Academic Publishers, 1978.
    [15] British Geological Survey, an overview to the Earth’s Magnetic Field, available at:
    http://www.geomag.bgs.ac.uk/education/earthmag.html
    [16] IAGA Division V-MOD Geomagnetic Field Modeling, International Geomagnetic Reference Field, available at:
    http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
    [17] Vallado, D. A., and McClain, W. D., “Fundamental of Astrodynamics and Applications Second Edition”, Microcosm Press, 2001.
    [18] Eby, M., “Space Thethers & MEMS Research,” University of Colorado Boulder, 2001, available at: http://ccar.colorado.edu/asen5050/projects/projects_2001/eby/
    [19] Miller, J., G3RUH, “SUN’S UP!” available at:
    http://www.amsat.org/amsat/articles/g3ruh/112.html
    [20] Chang, H. L., Xue, L., Qin, W., Yuan, G. M. and Yuan, W. Z., “An Integrated MEMS Gyroscope Array with Higher Accuracy Output,” in Proceedings of Sensors (ISSN 1424-8220) Open Access Journal, Sensors 2008, 8(4), 2886-2899.
    [21] Grewal, M. S., Weill, L. R., and Andrews, A. P., “Global Positioning Systems, Inertial Navigation, and Integration,” John Wiley & Sons, Inc. Publication, 2001.
    [22] French, S., “Random Drift in the MEMSENSE Product Line,” available at:
    http://www.memsense.com/docs/MTD-0903-DRIFT-REVA2.pdf
    [23] Tisa, P., Vergez, P., “Performance Analysis of Control Algorithms for FalconSat-3,”
    16th ASS/AIAA Space Flight Mechanics Conference, Tampa, FLA, USA, AAS 06-149,
    January 22-16, 2006.
    [24] Sidi, M. J., “Spacecraft Dynamics and Control: A Practical Engineering Approach,” Cambridge University Press, Cambridge, 1997.
    [25] Astolfi, A., and Lovera, M., “A Novel Architecture for Magnetic Attitude Control of Gravity Gradient Satellites”, in Proceedings volume from the 16th IFAC Symposium, Saint-Petersburg, Russia, 14-18 June 2004, Vol. 1, pp. 113118, 2004.
    [26] Sedlund, C. A., “A Simple Sun-Pointing Magnetic Controller for Satellites in Equatorial Orbits,” IEEE Paper 1502, December 18, 2008.
    [27] Lefferts, E. J., Markley, F. L., and Shuster, M. D., “Kalman Filtering for Spacecraft Attitude Estimation,” in Proceedings volume from the 20th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 11-14, 1982.
    [28] Crassidis, J. L., Markley, F. L., and Cheng, Y., “A Survey of Nonlinear Attitude Estimation Methods,” Journal of Guidance, Control, and Dynamics 2007, Vol. 30, No.1, JanuaryFebruary.
    [29] Farrell, J. A., “Aided Navigation: GPS with High Rate Sensors,” The McGraw-Hill companies, 2008.
    [30] Kutlu, A., “Design of Kalman Filter based Attitude Determination Algorithms for a LEO Satellite and for a Satellite Attitude Control Test Setup,” Master Thesis, Graduate School of natural and Applied Sciences of Middle East Technical University, 2008
    [31] Markley, F. L., “Attitude Error Representation for Kalman Filtering,” Journal of Guidance , Control, and Dynamics, Vol. 26, No. 2, MarchApril 2003.
    [32] Wang, K. N., “Design and Validation of Micro Satellite Attitude Determination and Control Subsystem,’ Master Thesis, Department of Electrical Engineering, NCKU, 2009.
    [33] Yang, X. Z., “Development and Verification of Microsatellite Attitude Control Subsystem Based on Processor-in-the-Loop Method,” Master Thesis, Department of Electrical Engineering, NCKU, 2010.
    [34] National Instrument: NI PXI-8106 user Manual, available at:
    http://www.ni.com/pdf/manuals/372096a.pdf
    [35] Jasio, L. D., “Programing 32-bit Microcontrollers in C: Exploring the PIC32 (Embedded Technology),” Newnes, 2008.

    無法下載圖示 校內:2016-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE