簡易檢索 / 詳目顯示

研究生: 鄭翔駿
Cheng, Hsiang-Chun
論文名稱: 多功能石墨烯離子選擇層提升可能源回收之鹽水電容去離子效率
Multi-functional graphene as ion-selective layers for enhanced capacitive deionization of salt water with energy recovery
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 124
中文關鍵詞: 海水脫鹽電容去離子石墨烯離子選擇層能源回收升降電壓轉化器
外文關鍵詞: Desalination, capacitive deionization, graphene, ion-selective layer, energy recovery, buck-boost converter
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球水資源的匱乏,海水脫鹽的發展已成為日趨重要的議題。電容去離子(capacitive deionization, CDI)有低耗能及低操作成本等優點,被視為極具潛力的技術。近年來,離子交換膜(ion exchange membrane, IEM)也被應用在CDI中提升電吸附的效率。然而,為增加商業化應用,需克服幾項問題,例如: 商業IEM的高價位及IEM所造成的介面電阻。另一方面,如何有效回收CDI電吸附過程所儲存的能量,並提升整體的能源利用率也引起許多關注。因此,本篇研究的兩大研究目的: (Ⅰ) 以多功能石墨烯研製低成本高效率的離子選擇層並應用於CDI電極及(II) 藉由升降電壓轉換器發展CDI能源回收裝置。
    製備sulfonated graphene oxide (SGO)及PDDA-functionalized reduced graphene oxide (PrGO),並以FTIR、XRD、Raman及XPS進行材料特性分析。將具有特殊官能基的SGO及PrGO與聚乙烯醇混合並塗佈在CDI活性碳電極上,以接觸角、界達電位及電化學儀器分析電極特性。實驗結果顯示,塗佈SGO(8.4 mg/g)及PrGO(7 mg/g)的碳電極具高比吸附量及穩定性,充電效率也分別提升至89%及67%。塗佈在碳電極上的離子選擇層具有篩選特定離子,並具加速傳輸的能力,有效降低同離子效應(co-ion effect)的發生,可能是效率提升的主要原因。
    利用類似超級電容的優點,CDI電吸附過程所消耗的能量可以藉由升降電壓(buck-boost converter)部分的回收再利用。升降電壓轉換器主要由金屬氧化物半導體場效電晶體及電感所組成,以同步整流式控制,將回收的能量暫時儲存於電感再轉移到下一組裝置。設定0.6安培為電感上限值,其能源回收率可以高達57.4%。另外,能源回收率也會隨著輸出端電容及電感值的下降而有所提升。
    本研究發展簡單且高效能的多功能石墨烯離子選擇層,塗佈在碳電極可有效提升CDI效率。有鑑於永續經營的概念,CDI的能源回收裝置也被認為在未來會受到更多的關注並具有很大的應用潛力。

    The development of desalination process has been considered increasing importance because of the increasing water shortage. Capacitive deionization (CDI) has been regarded as a promising method with a relatively low energy consumption and operation cost. Recently, ion exchange membrane (IEM) has been extensively used in CDI, referred to as membrane capacitive deionization (MCDI), to improve the electrosorption performance. Nevertheless, some challenges remain to be overcome in practical applications, for example, the high cost and interfacial resistance. On the other hand, in a view of the energy efficiency for CDI, to reuse the stored energy during electrosorption has been emphasized as well. Thus, two major objectives of this study were: (1) to prepare high -efficiency and cost-effective graphene-based ion-selective layers for CDI electrodes and (2) to develop a CDI energy recovery device by a buck-boost converter.
    Sulfonated graphene oxide (SGO) and PDDA-functionalized reduced graphene oxide (PrGO) were prepared and characterized by FTIR, XRD, Raman, and XPS spectroscopies to study the chemical structure and functional groups. The functional graphene (SGO and PrGO) were blended with poly(vinyl alcohol) and coated on the activated carbon (AC) electrodes. The electrode property was determined by contact angle, zeta potential, and electrochemical analysis. Experimentally, the electrode pairs have a high electrosorption capacity with desired stability (8.4 and 7 mg/g for AC/SGO-AC and AC-PrGO/AC, respectively). In addition, the charge efficiency for AC/SGO-AC and AC-PrGO/AC has been enhanced as high as 89 and 67%, respectively. The improved performance may be mainly due to the existence the of ion-selective layers. The strong selectivity for the SGO and PrGO toward specific ions can greatly reduce the co-ion effect and accelerate the ion transport rate.
    Taking the similar advantage to the supercapacitor, the consumed energy of CDI is partially recovered by a buck-boost converter. The device mainly consists of MOSFETs and inductor. With the synchronous rectifier control system, the energy is temporarily stored in the inductor and passes to next cell. An efficiency as high as 57.4% is achieved with relatively low inductor current limit (0.6 A) due to the reduction in the conduction loss. Furthermore, a better performance of the device is achieved with a low capacitance (output) and inductance.
    The observations of this study provide a simple but effective method to enhance the CDI efficiency with functional graphene as ion-selective layers coated on the AC electrode. Given that the sustainable development, the CDI energy recovery device is like to attract more attention and have many promising applications in the near future.

    摘要 I Abstract III 誌謝 V Content VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Desalination technologies 3 2.1.1 Thermal-based technologies 3 2.1.2 Membrane-based technologies 4 2.1.3 Electrostatic interaction 5 2.2 Capacitive deionization 8 2.2.1 Theory 8 2.2.2 Cell architectures 9 2.2.3 Electrochemical reactions in CDI 10 2.2.4 Kinetic analysis 11 2.2.5 Performance metrics 11 2.2.6 Operation mode 12 2.3 Membrane capacitive deionization 20 2.3.1 Ion-exchange membrane 21 2.4 Energy recovery system 24 2.5 Membrane materials 28 2.5.1 Graphene oxide 28 2.5.2 Poly(diallyldimethylammonium chloride) 28 2.5.3 Poly (vinyl) alcohol 29 CHAPTER 3 EXPERIMENT METHODS 30 3.1 Experimental procedures 30 3.2 Preparation of graphene oxide 32 3.3 Preparation of sulfonated graphene oxide (SGO) 32 3.4 Preparation of PDDA-reduced graphene oxide (PrGO) 32 3.5 Preparation of MCDI electrodes 33 3.5.1 Preparation of activated carbon electrodes 33 3.5.2 Preparation of ion-selective layers 33 3.6 Energy recovery system 35 3.6.1 Resistance characterization of CDI cell 35 3.6.2 Design of CDI energy recovery system 35 3.7 Characterization 38 3.7.1 Fourier transform infrared spectroscopy (FTIR) 38 3.7.2 X-ray diffraction (XRD) 38 3.7.3 Raman spectroscopy 38 3.7.4 X-ray photoelectron spectroscopy (XPS) 39 3.7.5 Contact angle 39 3.7.6 Zeta potential 39 3.7.7 Electrochemical performance 39 3.7.8 Electrosorption experiment 40 CHAPTER 4 RESULTS AND DISCUSSION 43 4.1 Sulfonated graphene oxide as cation-selective layers on carbon electrodes for high-efficiency capacitive deionization 43 4.2 PDDA-functionalized rGO as anion-selective layer on carbon electrodes for high-efficiency capacitive deionization 71 4.3 Capacitive deionization with energy recovery by a buck-boost converter 90 CHAPTER 5 CONCLUSIONS 112 REFERENCE 113 APPENDIX A 123

    Ahmed, M. A., & Tewari, S. (2018). Capacitive deionization: Processes, materials and state of the technology. Journal of Electroanalytical Chemistry, 813, 178-192.
    Alkuran, M., & Orabi, M. (2008). Utilization of a buck boost converter and the method of segmented capacitors in a CDI water purification system. Paper presented at the Power System Conference, 2008. MEPCON 2008. 12th International Middle-East.
    Alkuran, M., Orabi, M., & Scheinberg, N. (2008). Highly efficient Capacitive De-Ionization (CDI) water purification system using a buck-boost converter. Paper presented at the Applied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE.
    AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of Capacitive Deionisation in water desalination: A review. Desalination, 342, 3-15.
    Alvarez-Gonzalez, F. J., Martin-Ramos, J. A., Diaz, J., Martinez, J. A., & Pernia, A. M. (2016). Energy-Recovery Optimization of an Experimental CDI Desalination System. IEEE Transactions on Industrial Electronics, 63(3), 1586-1597.
    Álvarez-González, F. J., Martín-Ramos, J. A., Díaz, J., Martínez, J. A., & Pernía, A. M. (2016). Energy-recovery optimization of an experimental CDI desalination system. IEEE Transactions on Industrial Electronics, 63(3), 1586-1597.
    Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856.
    Andres, G. L., & Yoshihara, Y. (2016). A capacitive deionization system with high energy recovery and effective re-use. Energy, 103, 605-617.
    Bao, C., Guo, Y., Song, L., & Hu, Y. (2011). Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry, 21(36), 13942.
    Beydaghi, H., Javanbakht, M., & Kowsari, E. (2014). Synthesis and Characterization of Poly(vinyl alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Industrial & Engineering Chemistry Research, 53(43), 16621-16632.
    Bian, Y., Liang, P., Yang, X., Jiang, Y., Zhang, C., & Huang, X. (2016). Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization. Desalination, 381, 95-99.
    Biesheuvel, P., Fu, Y., & Bazant, M. (2012). Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russian Journal of Electrochemistry, 48(6), 580-592.
    Biesheuvel, P. M., & van der Wal, A. (2010). Membrane capacitive deionization. Journal of Membrane Science, 346(2), 256-262.
    Biesheuvel, P. M., Zhao, R., Porada, S., & van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interface Sci, 360(1), 239-248.
    Bryjak, M., Siekierka, A., Kujawski, J., Smolińska-Kempisty, K., & Kujawski, W. (2015). Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions. Journal of Membrane and Separation Technology, 4(3), 110-115.
    Cai, P.-F., Su, C.-J., Chang, W.-T., Chang, F.-C., Peng, C.-Y., Sun, I., Wei, Y.-L., Jou, C.-J., & Wang, H. P. (2014). Capacitive deionization of seawater effected by nano Ag and Ag@ C on graphene. Marine pollution bulletin, 85(2), 733-737.
    Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., & Zhang, J. (2014). A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science, 7(5), 1564.
    Chen, G., Zhai, S., Zhai, Y., Zhang, K., Yue, Q., Wang, L., Zhao, J., Wang, H., Liu, J., & Jia, J. (2011). Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis. Biosens Bioelectron, 26(7), 3136-3141.
    Chen, P. A., Cheng, H. C., & Wang, H. P. (2018). Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. Journal of Cleaner Production, 174, 927-932.
    Chen, Z., Song, C., Sun, X., Guo, H., & Zhu, G. (2011). Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes. Desalination, 267(2-3), 239-243.
    Choi, J., Lee, H., & Hong, S. (2016). Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution. Desalination, 400, 38-46.
    Chong, L.-G., Chen, P.-A., Huang, J.-Y., Huang, H.-L., & Wang, H. P. (2018). Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Chemosphere, 191, 296-301.
    Dehkhoda, A. M., Ellis, N., & Gyenge, E. (2016). Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl 2 solutions. Microporous and Mesoporous Materials, 224, 217-228.
    Dlugolecki, P., & van der Wal, A. (2013). Energy recovery in membrane capacitive deionization. Environ Sci Technol, 47(9), 4904-4910.
    Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem Soc Rev, 39(1), 228-240.
    Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. science, 333(6043), 712-717.
    Feng, C., Tsai, C.-C., Ma, C.-Y., Yu, C.-P., & Hou, C.-H. (2017). Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chemical Engineering Journal, 330, 1-10.
    Gao, X., Omosebi, A., Landon, J., & Liu, K. (2015). Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy & Environmental Science, 8(3), 897-909.
    Gendel, Y., Rommerskirchen, A. K. E., David, O., & Wessling, M. (2014). Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46, 152-156.
    Ghaffour, N., Bundschuh, J., Mahmoudi, H., & Goosen, M. F. A. (2015). Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 356, 94-114.
    Gleick, P. H. (1993). Water in crisis: a guide to the worlds fresh water resources.
    Goh, P. S., Matsuura, T., Ismail, A. F., & Hilal, N. (2016). Recent trends in membranes and membrane processes for desalination. Desalination, 391, 43-60.
    Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res, 43(9), 2317-2348.
    Gu, X., Deng, Y., & Wang, C. (2016). Fabrication of Anion-Exchange Polymer Layered Graphene–Melamine Electrodes for Membrane Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 5(1), 325-333.
    Gu, X., Deng, Y., & Wang, C. (2017). Fabrication of Anion-Exchange Polymer Layered Graphene–Melamine Electrodes for Membrane Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 5(1), 325-333.
    He, D., Wong, C. E., Tang, W., Kovalsky, P., & Waite, T. D. (2016). Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environmental Science & Technology Letters, 3(5), 222-226.
    Hemmatifar, A., Palko, J. W., Stadermann, M., & Santiago, J. G. (2016). Energy breakdown in capacitive deionization. Water Res, 104, 303-311.
    Hong, J. G., Zhang, B., Glabman, S., Uzal, N., Dou, X., Zhang, H., Wei, X., & Chen, Y. (2015). Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science, 486, 71-88.
    Hou, Q., Li, W., Ju, M., Liu, L., Chen, Y., & Yang, Q. (2016). One-pot synthesis of sulfonated graphene oxide for efficient conversion of fructose into HMF. RSC Advances, 6(106), 104016-104024.
    Huang, W. E. I., Zhang, Y., Bao, S., & Song, S. (2013). Desalination by Capacitive Deionization with Carbon-Based Materials as Electrode: A Review. Surface Review and Letters, 20(06), 1330003.
    Jande, Y. A. C., & Kim, W. S. (2013). Desalination using capacitive deionization at constant current. Desalination, 329, 29-34.
    Jande, Y. A. C., & Kim, W. S. (2014). Modeling the capacitive deionization batch mode operation for desalination. Journal of Industrial and Engineering Chemistry, 20(5), 3356-3360.
    Jeon, S.-i., Park, H.-r., Yeo, J.-g., Yang, S., Cho, C. H., Han, M. H., & Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5), 1471.
    Jeon, S.-i., Yeo, J.-g., Yang, S., Choi, J., & Kim, D. K. (2014). Ion storage and energy recovery of a flow-electrode capacitive deionization process. Journal of Materials Chemistry A, 2(18), 6378.
    Ji, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F., & Fan, X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chem. Sci., 2(3), 484-487.
    Jia, B., & Zhang, W. (2016). Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review. Nanoscale Res Lett, 11(1), 64.
    Kang, J., Kim, T., Jo, K., & Yoon, J. (2014). Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination, 352, 52-57.
    Kang, J., Kim, T., Shin, H., Lee, J., Ha, J.-I., & Yoon, J. (2016). Direct energy recovery system for membrane capacitive deionization. Desalination, 398, 144-150.
    Kim, J.-S., & Choi, J.-H. (2010). Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of Membrane Science, 355(1-2), 85-90.
    Kim, J. S., Jeon, Y. S., & Rhim, J. W. (2016). Application of poly(vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono- and divalent salts. Separation and Purification Technology, 157, 45-52.
    Kim, Y.-J., & Choi, J.-H. (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology, 71(1), 70-75.
    Kim, Y. J., & Choi, J. H. (2010). Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Water Res, 44(3), 990-996.
    Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
    Lado, J. J., Pérez-Roa, R. E., Wouters, J. J., Tejedor-Tejedor, M. I., Federspill, C., & Anderson, M. A. (2015). Continuous cycling of an asymmetric capacitive deionization system: An evaluation of the electrode performance and stability. Journal of Environmental Chemical Engineering, 3(4), 2358-2367.
    Landon, J., Gao, X., Neathery, J. K., & Liu, K. (2013). Energy Recovery in Parallel Capacitive Deionization Operations. ECS Transactions, 53(30), 235-243.
    Laxman, K., Myint, M. T. Z., Al Abri, M., Sathe, P., Dobretsov, S., & Dutta, J. (2015). Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination, 362, 126-132.
    Lee, D.-H., Ryu, T., Shin, J., Ryu, J. C., Chung, K.-S., & Kim, Y. H. (2017). Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy, 173, 283-288.
    Lee, J.-H., Bae, W.-S., & Choi, J.-H. (2010). Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(1-3), 159-163.
    Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci., 7(11), 3683-3689.
    Lee, J. Y., Seo, S. J., Yun, S. H., & Moon, S. H. (2011). Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Res, 45(17), 5375-5380.
    Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22.
    Li, H., Nie, C., Pan, L., & Sun, Z. (2012). The study of membrane capacitive deionization from charge efficiency. Desalination and Water Treatment, 42(1-3), 210-215.
    Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 275(1-3), 62-66.
    Li, X.-W., Zhang, X.-S., Wang, H., & Zhang, Z. (2016). The potentials of capacitive deionization regeneration method for absorption air-conditioning system. Energy Conversion and Management, 114, 303-311.
    Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L., & Zhang, D. (2016). Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4(14), 5303-5313.
    Liu, Y., Pan, L., Xu, X., Lu, T., Sun, Z., & Chua, D. H. C. (2014). Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochimica Acta, 130, 619-624.
    Lu, D., Cai, W., & Wang, Y. (2017). Optimization of the voltage window for long-term capacitive deionization stability. Desalination, 424, 53-61.
    Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yan, H., Ni, W., Zhang, L., & Yan, Y.-M. (2016). Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method. Desalination, 386, 32-38.
    Mehrabian-Nejad, H., Farhangi, B., Farhangi, S., & Vaez-Zadeh, S. (2016). DC-DC converter for energy loss compensation and maximum frequency limitation in capacitive deionization systems. Paper presented at the Power Electronics and Drive Systems Technologies Conference (PEDSTC), 2016 7th.
    Novoselov, K. S., Fal'ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200.
    Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 228(1-3), 10-29.
    Pandey, R. P., Shukla, G., Manohar, M., & Shahi, V. K. (2017). Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv Colloid Interface Sci, 240, 15-30.
    Pandit, S., Khilari, S., Bera, K., Pradhan, D., & Das, D. (2014). Application of PVA–PDDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell. Chemical Engineering Journal, 257, 138-147.
    Pernia, A., Alvarez-Gonzalez, F. J., Prieto, M. A., Villegas, P. J., & Nuno, F. (2014). New Control Strategy of an Up–Down Converter for Energy Recovery in a CDI Desalination System. IEEE Transactions on Power Electronics, 29(7), 3573-3581.
    Pernia, A. M., Alvarez-Gonzalez, F. J., Prieto, M. A. J., Villegas, P. J., & Nuno, F. (2014). New Control Strategy of an Up–Down Converter for Energy Recovery in a CDI Desalination System. IEEE Transactions on Power Electronics, 29(7), 3573-3581.
    Pernía, A., J. Alvarez-González, F., Díaz, J., Villegas, P., & Nuño, F. (2014). Optimum Peak Current Hysteresis Control for Energy Recovering Converter in CDI Desalination. Energies, 7(6), 3823-3839.
    Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442.
    Qian, B., Wang, G., Ling, Z., Dong, Q., Wu, T., Zhang, X., & Qiu, J. (2015). Sulfonated Graphene as Cation-Selective Coating: A New Strategy for High-Performance Membrane Capacitive Deionization. Advanced Materials Interfaces, 2(16), 1500372.
    Qu, Y., Baumann, T. F., Santiago, J. G., & Stadermann, M. (2015). Characterization of Resistances of a Capacitive Deionization System. Environ Sci Technol, 49(16), 9699-9706.
    Qu, Y., Campbell, P. G., Gu, L., Knipe, J. M., Dzenitis, E., Santiago, J. G., & Stadermann, M. (2016). Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination, 400, 18-24.
    Ran, J., Wu, L., He, Y., Yang, Z., Wang, Y., Jiang, C., Ge, L., Bakangura, E., & Xu, T. (2017). Ion exchange membranes: New developments and applications. Journal of Membrane Science, 522, 267-291.
    Safarpour, M., Khataee, A., & Vatanpour, V. (2015). Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO 2 with improved desalination performance. Journal of Membrane Science, 489, 43-54.
    Shapira, B., Avraham, E., & Aurbach, D. (2016). Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction. Electrochimica Acta, 220, 285-295.
    Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271.
    Smolinska, K., & Bryjak, M. (2012). Stimuli response polypropylene membranes as selective separators for alkaline ions. Desalination, 300, 64-69.
    Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., & Müllen, K. (2009). Composites of Graphene with Large Aromatic Molecules. Advanced Materials, 21(31), 3191-3195.
    Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment: a critical review. Water Res, 75, 164-187.
    Sun, Z., Chai, L., Liu, M., Shu, Y., Li, Q., Wang, Y., Wang, Q., & Qiu, D. (2018). Capacitive deionization of chloride ions by activated carbon using a three-dimensional electrode reactor. Separation and Purification Technology, 191, 424-432.
    Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., & Mahurin, S. M. (2015). Water desalination using nanoporous single-layer graphene. Nat Nanotechnol, 10(5), 459-464.
    Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. A., Santiago, J. G., & Stadermann, M. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 9511.
    Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 8(8), 2296-2319.
    Suss, M. E., & Presser, V. (2018). Water Desalination with Energy Storage Electrode Materials. Joule, 2(1), 10-15.
    Tang, W., He, D., Zhang, C., Kovalsky, P., & Waite, T. D. (2017). Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res, 120, 229-237.
    Tian, G., Liu, L., Meng, Q., & Cao, B. (2014). Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/activated carbon composite electrode for membrane capacitive deionization. Desalination, 354, 107-115.
    Vinayan, B. P., Nagar, R., Raman, V., Rajalakshmi, N., Dhathathreyan, K. S., & Ramaprabhu, S. (2012). Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. Journal of Materials Chemistry, 22(19), 9949.
    Voggu, R., Das, B., Rout, C. S., & Rao, C. N. R. (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. Journal of Physics: Condensed Matter, 20(47), 472204.
    Wang, C., Lin, B., Qiao, G., Wang, L., Zhu, L., Chu, F., Feng, T., Yuan, N., & Ding, J. (2016). Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Materials Letters, 173, 219-222.
    Wang, C., Song, H., Zhang, Q., Wang, B., & Li, A. (2015). Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination, 365, 407-415.
    Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., & Qiu, J. (2013). Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 103, 216-221.
    Wang, K., Abdalla, A. A., Khaleel, M. A., Hilal, N., & Khraisheh, M. K. (2017). Mechanical properties of water desalination and wastewater treatment membranes. Desalination, 401, 190-205.
    Wang, X., Liu, Z., Ye, X., Hu, K., Zhong, H., Yu, J., Jin, M., & Guo, Z. (2014). A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes. Applied Surface Science, 308, 82-90.
    Xiong, Y., Liu, Q. L., Zhang, Q. G., & Zhu, A. M. (2008). Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. Journal of Power Sources, 183(2), 447-453.
    Xu, F., Deng, M., Liu, Y., Ling, X., Deng, X., & Wang, L. (2014). Facile preparation of poly (diallyldimethylammonium chloride) modified reduced graphene oxide for sensitive detection of nitrite. Electrochemistry Communications, 47, 33-36.
    Xu, Y., Hong, W., Bai, H., Li, C., & Shi, G. (2009). Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47(15), 3538-3543.
    Zhang, D., Wen, X., Shi, L., Yan, T., & Zhang, J. (2012). Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale, 4(17), 5440-5446.
    Zhang, J., Qiao, J., Jiang, G., Liu, L., & Liu, Y. (2013). Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359-367.
    Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6(4), 537-544.
    Zhang, Y., Zou, L., Wimalasiri, Y., Lee, J.-Y., & Chun, Y. (2015). Reduced graphene oxide/polyaniline conductive anion exchange membranes in capacitive deionisation process. Electrochimica Acta, 182, 383-390.
    Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H., & van der Wal, A. (2010). Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization. The Journal of Physical Chemistry Letters, 1(1), 205-210.
    Zhao, R., Biesheuvel, P. M., & van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5(11), 9520.
    Zhao, Y., Hu, X.-m., Jiang, B.-h., & Li, L. (2014). Optimization of the operational parameters for desalination with response surface methodology during a capacitive deionization process. Desalination, 336, 64-71.
    Zhou, Z., & Wu, X.-F. (2013). Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization. Journal of Power Sources, 222, 410-416.
    Zhu, G., Wang, W., Li, X., Zhu, J., Wang, H., & Zhang, L. (2016). Design and fabrication of a graphene/carbon nanotubes/activated carbon hybrid and its application for capacitive deionization. RSC Advances, 6(7), 5817-5823

    無法下載圖示 校內:2023-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE