簡易檢索 / 詳目顯示

研究生: 賴東谷
Lai, Dong-Gu
論文名稱: 以內感應加熱系統應用於醫用熱療電磁模組
Development of a Hyperthermia Needling System with Inner Magnetic Induction Heating
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 感應加熱熱療療法線圈設計溫度均勻性
外文關鍵詞: Induction heating, Hyperthermia, Coil design, Temperature uniform
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝病為我國國病,肝硬化病人每年有 3~5%轉為肝癌,因此肝癌為我國癌症死亡排名第二位。早期肝癌可用手術切除或局部廓清的方法治療。採用熱能使腫瘤溫度上升至攝氏 50度。廓清腫瘤的方法因對病人傷害極小,於近來受到普遍的應用。但目前國內的熱療器材均仰賴國外進口耗價成本極高。感應加熱熱療 (Hyperthermia Needling System with Induction Heating)原理乃利用不鏽鋼針管插入人體,藉由高頻電源供應器提供之能量使前端線圈產生感應加熱,對腫瘤組織加以熱療燒毀有害部位。本研究結合跨領域人才進行電磁感應加熱模組之構成。包含材料評估、抗沾黏選用與製造技術改良並結合精密加工製造技術以及醫事人員測試評估結果,期望開發為國人適用的電磁感應加熱燒灼器械來降低醫療成本。本研究的目標主要是以感應加熱應用於醫用熱療電磁模組。首先運用軟體模擬出之參數設計測試案例。一般而言,癌細胞 42 ℃以上溫度即可燒毀,經由實驗可得知此醫用熱療電磁模組在空氣中實驗一分鐘所能產生的溫度已高於燒毀癌細胞之溫度。此外,通入醫用熱療電磁模組的頻率為可調,因此可以適用於不同的線圈設計來作為不同腫瘤細胞之治療或組織切除。加上此醫用熱療電磁模組升溫過高,可藉由人機介面控制其電源供應輸出功率。使之對加熱組織產生溫度平衡而控制溫度為定值,或者使醫用熱療電磁模組繼續升溫或降溫。

    The purpose of this research is to develop an internal heating system for the common needle of SUS-304 steel in cancer treatment via hyperthermia. The heating ability with the needle via internal induction supplied by an induction heating power with high frequency output at 50-300 kHz, and variable voltage outputs was investigated. The temperature distribution at the entire needle was also considered.
    Electromagnetic thermal surgery is a new technique. It applies an electrical current through coils to generate a high frequency magnetic field to heat up magnetic materials in the targeted area. Using this technology, we aim to perform liver resection without bleeding in pigs and rabbits.
    Development of a hyperthermia needling system with inner magnetic induction heating. First, we design the test cases to simulate by software. In General, cancer cells can be killed above 42℃. By the experiments, the temperature has been above it in a minute and experiment in the air. In addition, the frequency of module is adjustable, so users can apply different coil design as different treatment of cancer cells. If the temperature is too high, the users can control the power supply by user interface. And the temperature can be constant that balance with cells. Users can control module making it continue heating or lowering the temperature.

    摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 X 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1-1 前言 1 1-2 醫用熱療基本介紹 2 1-2-1 醫用熱療的種類 2 1-2-2 醫用熱療的問題與改善 3 1-3 文獻回顧 4 1-3-1 熱療技術競爭 5 1-3-2 傳統RFA技術之比較 6 1-3-3 微波技術的使用 6 1-4 研究動機與目的 7 1-5 文章架構 8 第二章 感應加熱的基本介紹及背景理論 10 2-1 感應加熱的介紹 10 2-2 感應加熱的原理 10 2-3 感應加熱的特性 11 2-3-1 金屬的電磁特性 11 2-3-2 金屬的熱傳特性 19 2-4 感應加熱的熱傳方式 19 2-4-1 熱傳導 19 2-4-2 熱對流 20 2-4-3 熱輻射 21 2-5 感應加熱的優點 23 第三章 醫用熱療電磁模組模擬與實驗介紹 24 3-1 實驗目的 24 3-2 醫用熱療電磁模組電阻加熱設計與模擬 25 3-2-1 模擬模型尺寸 26 3-2-2 模擬類型與邊界條件 28 3-2-3 材料設定 29 3-2-4 模擬案例設定 30 3-2-5 醫用熱療電磁模組電阻加熱模擬結果 33 3-2-6 電功率與升溫計算 35 3-3 感應加熱設備 38 3-3-1 感應加熱設備 - 高頻電流源 38 3-3-2 諧振電感線圈工作 39 3-4 紅外線熱影像儀 46 3-5 醫用熱療電磁模組內針繞線機實作 48 3-6 感應加熱溫控實驗結果與人機介面 51 3-7 醫用熱療電磁模組 60 3-7-1 兩段式醫用熱療電磁模組 61 3-7-1 SUS 420F與SUS 304醫用熱療電磁模組 63 3-7-2 PTC穿刺針改良型醫用熱療電磁模組 68 3-8 加熱線圈設計與溫度分佈 70 3-9 溫度均勻性感應磁場分析說明 72 3-9-1 感應線圈疏密調整 73 3-9-2 結果與討論 74 第四章 醫用熱療電磁模組實驗 75 4-1 實驗設備 75 4-2 豬肝實驗燒灼結果 76 4-2-1. 兩段式醫用熱療電磁模組 77 4-2-2. SUS 420F醫用熱療電磁模組 80 4-2-3. PTC 穿刺針改良型醫用熱療電磁模組 84 4-3 動物實驗燒灼結果 87 4-3-1 動物實驗結果 87 4-3-2 動物實驗結果討論與改善 91 第五章 結論與未來展望 93 5-1 結論 93 5-2 未來展望 94 參考文獻 96 索引 99 作者自介 102

    [1] A. Ayav, L. R. Jiao, and N. A. Habib, "Bloodless liver resection using radiofrequency energy," Digestive surgery, vol. 24, pp. 314-317, 2007.
    [2] J. Bonastre, T. De Baère, D. Elias, S. Evrard, P. Rouanet, C. Bazin, et al., "Cost of radiofrequency ablation in the treatment of hepatic malignancies," Gastroentérologie clinique et biologique, vol. 31, pp. 828-835, 2007.
    [3] T. Livraghi, S. N. Goldberg, S. Lazzaroni, F. Meloni, L. Solbiati, and G. S. Gazelle, "Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection," Radiology, vol. 210, pp. 655-661, 1999.
    [4] T. Naohara, H. Aono, H. Hirazawa, T. Maehara, Y. Watanabe, and S. Matsutomo, "Heat generation ability in AC magnetic field of needle-type Ti-coated mild steel for ablation cancer therapy," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, pp. 1582-1588, 2011.
    [5] K. K. Ng, R. T. Poon, C.-M. Lo, J. Yuen, W. K. Tso, and S.-T. Fan, "Analysis of recurrence pattern and its influence on survival outcome after radiofrequency ablation of hepatocellular carcinoma," Journal of Gastrointestinal Surgery, vol. 12, pp. 183-191, 2008.
    [6] Y. Takada, M. Kurata, and N. Ohkohchi, "Rapid and aggressive recurrence accompanied by portal tumor thrombus after radiofrequency ablation for hepatocellular carcinoma," International Journal of Clinical Oncology, vol. 8, pp. 332-335, 2003.
    [7] Y. Watanabe, K. Sato, S. Yukumi, M. Yoshida, Y. Yamamoto, T. Doi, et al., "Development of a second-generation radiofrequency ablation using sintered MgFe2O4 needles and alternating magnetic field for human cancer therapy," Bio-Medical Materials and Engineering, vol. 19, pp. 101-110, 2009.
    [8] R. Zuchini, H.-W. Tsai, C.-Y. Chen, C.-H. Huang, S.-C. Huang, G.-B. Lee, et al., "Electromagnetic thermotherapy using fine needles for hepatoma treatment," European Journal of Surgical Oncology (EJSO), vol. 37, pp. 604-610, 2011.
    [9] G. Wang, G. Zhao, H. Li, and Y. Guan, "Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating," Materials & Design, vol. 31, pp. 382-395, 2010.
    [10] S. C. Chen, W. R. Jong, and J. A. Chang, "Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line," Journal of applied polymer science, vol. 101, pp. 1174-1180, 2006.
    [11] W. M. Yang, P. C. Xie, S. J. Chang, and X. T. He, "Numerical Simulation of Temperature Field in Barrel of Injection Molding Machine during Induction Heating Process Based on ANSYS Software," Advanced Materials Research, vol. 87, pp. 16-21, 2010.
    [12] M. Kranjc, A. Zupanic, D. Miklavcic, and T. Jarm, "Numerical analysis and thermographic investigation of induction heating," International Journal of Heat and Mass Transfer, vol. 53, pp. 3585-3591, 2010.
    [13] R. A. Malloy, Plastic part design for injection molding: an introduction: Hanser Gardner Publications, 1994.
    [14] B. F. Taylor, T. W. Womer, and R. Kadykowski, "Efficiency Gains and Control Improvements Using Different Barrel Heating Technologies for the Injection Molding Process," in ANTEC-CONFERENCE PROCEEDINGS-, 2007, p. 2429.
    [15] I. I. Iatcheva, R. D. Stancheva, and M. Metodiev, "FEM Investigation of Induction Heating System for Pipe Brazing."
    [16] Z. Chaohui, "Theory and Application of ANSYS v11," ed: Electronics Industry Publishing, Beijing, 2008.
    [17] R. A. Serway and J. W. Jewett Jr, Physics for scientists and engineers vol. 1: Brooks/Cole Publishing Company, 2009.
    [18] F. W. Curtis, High-frequency induction heating: McGraw-Hill, 1950.

    無法下載圖示 校內:2018-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE