| 研究生: |
林祐旭 Lin, You-Syu |
|---|---|
| 論文名稱: |
基於功率導向扭矩控制之手轉車輔助訓練系統設計與控制研究 Design and Control of a Power-Oriented Torque-Controlled Hand-Crank Training Assistance System |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 行星齒輪系 、雙輸入控制系統 、阻抗控制 、功率訓練 、人機互動系統 |
| 外文關鍵詞: | Planetary gear system, dual-input control, impedance control, power training, human–machine interaction |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著健康意識提升與生活型態改變,居家健身已成為現代人維持體能的重要方式。然而,傳統居家健身器材缺乏適當的訓練指導與即時回饋,易導致訓練效果不佳或運動風險增加。本研究選擇「輪拳手轉車」作為研究載體,此器材操作直觀,廣泛應用於上肢肌力與心肺訓練。
本研究提出創新的雙輸入控制人機互動系統,應用於輪拳手轉車架構,透過行星齒輪系統實現可調式阻抗與力回饋之平台。系統結合行星齒輪之雙輸入單輸出(DISO)特性,透過協調控制達成靈活阻抗調整與動態負載變化,建立速度與扭矩關係式以實現精確控制。基於此架構,設計三種訓練模式:阻抗控制模式模擬傳統轉車阻力,適用於基礎肌力訓練;定扭矩模式模擬滑輪下拉特性,使操作者於不同轉速下維持一致扭矩感受;定功率模式則為創新策略,系統動態計算操作者功率,轉速提升時自動降低阻力,反之增加阻力,以符合人體生理特性,並具備扭矩與功率模式切換功能。
此雙輸入控制策略突破傳統單一扭矩控制限制,為健身訓練提供更高彈性與成本效益。本研究主要貢獻在於技術創新與功率導向策略之開發,為智慧健身器材發展開創新方向。
With growing health awareness and lifestyle changes, home-based fitness has become essential to maintaining physical well-being. However, conventional equipment often lacks proper guidance and real-time feedback, limiting training effectiveness. This study develops a dual-input control human–machine interaction system for a hand cycle, integrating a planetary gear mechanism to enable adjustable impedance and force feedback. The system achieves flexible impedance modulation and dynamic load variation through coordinated control by exploiting the dual-input single-output characteristics. Three training modes are implemented: impedance control (fixed resistance for basic strength training), constant torque (consistent torque across varying speeds), and continuous power (adaptive resistance adjustment based on real-time power output). The latter introduces a novel, physiology-oriented training strategy and supports seamless switching with the constant torque mode. This dual-input approach overcomes the limitations of single-torque control, offering a flexible, cost-effective platform for intelligent fitness applications.
[1] How To Do A KRANKCYCLE SEATED DOUBLE REVERSE PULL SPIN (Matrix) | Exercise Demonstration Video. https://reurl.cc/VW5Za6.
[2] Krankcycle balance exercise. https://reurl.cc/nY5bVn.
[3] P. B. Schmidt and R. D. Lorenz, "Design principles and implementation of acceleration feedback to improve performance of DC drives," IEEE transactions on Industry applications, vol. 28, no. 3, pp. 594-599, 2002.
[4] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and E. Burdet, "Human-like adaptation of force and impedance in stable and unstable interactions," IEEE transactions on robotics, vol. 27, no. 5, pp. 918-930, 2011.
[5] L. M. Mooney, E. J. Rouse, and H. M. Herr, "Autonomous exoskeleton reduces metabolic cost of human walking during load carriage," Journal of neuroengineering and rehabilitation, vol. 11, no. 1, p. 80, 2014.
[6] E. J. Rouse, L. J. Hargrove, E. J. Perreault, and T. A. Kuiken, "Estimation of human ankle impedance during the stance phase of walking," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 4, pp. 870-878, 2014.
[7] M. Focchi et al., "Robot impedance control and passivity analysis with inner torque and velocity feedback loops," Control Theory and Technology, vol. 14, no. 2, pp. 97-112, 2016.
[8] N. Hogan, "Impedance Control: An Approach to Manipulation," 1984 American Control Conference, pp. 304-313, 1984.
[9] T. Li and R. Zhu, "Global analysis of a planetary gear train," Shock and Vibration, vol. 2014, no. 1, 2014.
[10] L. Ryali and D. Talbot, "A dynamic load distribution model of planetary gear sets," Mechanism and Machine Theory, vol. 158, p. 104229, 2021.
[11] M. Neagoe, R. Saulescu, C. Jaliu, and N. Cretescu, "Steady-State Modeling and Simulation of a 1-DOF Dual-Input and Dual-Output Planetary Speed Increaser for Counter-Rotating Wind Turbines," pp. 20-31, 2022.
[12] B.-S. Kim, J.-B. Song, and J.-J. Park, "A serial-type dual actuator unit with planetary gear train: Basic design and applications," IEEE/ASME Transactions on Mechatronics, vol. 15, no. 1, pp. 108-116, 2009.
[13] H. Lee and Y. Choi, "A new actuator system using dual-motors and a planetary gear," IEEE/ASME Transactions on mechatronics, vol. 17, no. 1, pp. 192-197, 2011.
[14] 李健宏, "行星齒輪結構之電控無段變速器設計與其應用," 碩士論文, 成功大學機械工程學系, 2015.
[15] V. Ferrer-Roca, R. Bescós, A. Roig, P. Galilea, O. Valero, and J. García-López, "Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics," Journal of strength and conditioning research., vol. 28, no. 3, pp. 784-791, 2014.
[16] A. Kahraman, "Free torsional vibration characteristics of compound planetary gear sets," Mechanism and machine theory, vol. 36, no. 8, pp. 953-971, 2001.
[17] 高位下拉訓練機-強生運動科技Chanson. http://www.chanson.com.tw/productsInfo.php?id=331&p=1.
[18] STRYD 跑步功率計. https://www.stryd.tw/.
[19] 【Wahoo】KICKR MOVE 直驅式智慧型訓練台 - KLIGHT Sport Marketing. https://www.klight.com.tw/product/wahoo-kickr-move/.
[20] M.-C. Tsai and D.-W. Gu, "Robust and optimal control," Advances in Industrial Control, vol. 33, no. 97, pp. 2095-2095, 2014.
[21] S. J. Dodds, "Settling time formulae for the design of control systems with linear closed loop dynamics," Proceedings of Advances in Computing and Technology, pp. 31-39, 2008.
[22] 陳冠昕, "電助自行車之輔助扭矩控制策略研究," 碩士論文, 成功大學機械工程學系, 2017.
[23] CompactRIO 系統 (cRIO). https://www.ni.com/zh-tw/shop/compactrio.html?srsltid=AfmBOop0u6fMdKNVgvJvDOpckgSrAagUbs1_sR9XmYkACRKff2mTOntm.