簡易檢索 / 詳目顯示

研究生: 張育慈
Chang, Yu-Tzu
論文名稱: 以邏輯斯迴歸模型分析二元資料為療效指標與多組新藥的非劣性試驗
Three-arm non-inferiority trials with multiple new treatments for binary endpoints using logistic regression
指導教授: 杜宜軒
Tu, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 邏輯斯迴歸三組非劣性試驗檢測靈敏度多重比較
外文關鍵詞: logistic regression, three-arm non-inferiority, assasy sensitivity, mutiple comparisons
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臨床試驗中,由於越來越少具有突破性的新藥出現,所以非劣性試驗日益重要。本文主要是針對療效指標為二元資料,在多組新藥同時進行非劣性試驗並且考慮該試驗的檢測靈敏度下,配適邏輯斯迴歸,對各種藥物所對應的迴歸係數已近似常態分配來檢定。由於有多組新藥進行多次檢定,會造成整體型一誤差率(familywise error rate, FWER)上升,因此利用單一步驟(single-step)法、step-down 法和step-up法控制,並於模擬研究中比較三種方法的整體型一誤差率和檢定力。最後應用此方法於治療牛皮癬藥物的臨床試驗中,比較捷仰炎(tofacitinib)十毫克或捷仰炎五毫克是否不差於恩博(etanercept)。

    There are four phases in clinical trials and the non-inferiority trial is one of trials in phase
    III. Nowadays, the non-inferiority trial becomes more and more important, because the efficacy of new drugs is difficult to prove. In this article, we consider a three-arm noninferiority trial with multiple new treatments for binary endpoints. We construct test statistics based on the transformation of the estimated coefficients from a logistic regression. Moreover, we apply single-step method, step-down method, and step-up method to control familywise error rate (FWER). In the simulation study, we compare the FWER and the power for three methods. Finally, we demonstrate our methods on the psoriasis trial conducted by Bachelez et al. (2015) to assert the efficacy of tofacitinib 10 mg and tofacitinib 5 mg is at worst clinically irrelevantly inferior to the etanercept.

    摘要i 英文延伸摘要ii 誌謝viii 目錄ix 表目錄xi 第1 章. 續論1 第2 章. 文獻回顧4 2.1. 二元療效指標的兩組非劣性試驗. . . . . . . . . . . . . . . . . . . . . . 4 2.2. 二元療效指標的三組非劣性試驗. . . . . . . . . . . . . . . . . . . . . . 5 2.3. 在非劣性試驗下的邏輯斯迴歸模型. . . . . . . . . . . . . . . . . . . . . 5 第3 章. 統計方法7 3.1. 建立模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2. 假設檢定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. 檢定統計量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4. 臨界值選取與拒絕法則. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.1. 單一步驟(single-step) 法. . . . . . . . . . . . . . . . . . . . . . . 11 3.4.2. step-down 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.3. step-up 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第4 章. 模擬研究15 4.1. 整體型一誤差率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.1. HP 0 且H1 0 且H2 0 為真. . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.2. HP 0 且H1 0 為真. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.3. 只有HP 0 為真. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.4. 只有H1 0 為真. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2. 檢定力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1. HP a 為真. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.2. H1 a且H2 a為真. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3. H1 a且H2 a且HP a 為真. . . . . . . . . . . . . . . . . . . . . . . . . . 26 第5 章. 資料分析30 5.1. 無共變量模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2. 加入共變量模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第6 章. 結論與建議33 參考文獻 34 附錄A. 模擬R 程式36 A.1. 無共變量模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 A.2. 加入共變量模型資料生成方式. . . . . . . . . . . . . . . . . . . . . . . 40

    林六志、葉嘉新. (2008). 新藥開發與臨床試驗. 秀威資訊科技.
    歐盈全、歐盈如. (2013). 新藥臨床試驗簡介. http://scimonth.blogspot.tw/.
    Agresti, A., & Kateri, M. (2011). Categorical data analysis. Springer.
    Bachelez, H., van de Kerkhof, P. C., Strohal, R., Kubanov, A., Valenzuela, F., Lee, J.-H., …
    others (2015). Tofacitinib versus etanercept or placebo in moderate-to-severe chronic
    plaque psoriasis: a phase 3 randomised non-inferiority trial. The Lancet, 386(9993),
    552–561.
    Committee for Medicinal Products for Human Use and others. (2006). Committee for medicinal
    products for human use (chmp) guideline on the choice of the non-inferiority margin.
    Statistics in medicine, 25(10), 1628.
    Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments
    with a control. Journal of the American Statistical Association, 50(272), 1096–1121.
    Dunnett, C. W., & Tamhane, A. C. (1992). A step-up multiple test procedure. Journal of the
    American Statistical Association, 87(417), 162–170.
    Food and Drug Administration and others. (1998). Guidance for industry: E9 statistical
    principles for clinical trials. Food and Drug Administration: Rockville, Maryland,
    USA.
    Gail, M. H., Wieand, S., & Piantadosi, S. (1984). Biased estimates of treatment effect in randomized
    experiments with nonlinear regressions and omitted covariates. Biometrika,
    71(3), 431–444.
    GUIDANCE, D. (2010). Guidance for industry non-inferiority clinical trials. Center for
    Biologics Evaluation and Research (CBER).
    Guideline, ICH Harmonised Tripartite. (2000). Choice of control group and related issues in
    clinical trials e10. Choice, E10.
    Hida, E., & Tango, T. (2013). Three-arm noninferiority trials with a prespecified margin for
    inference of the difference in the proportions of binary endpoints. Journal of biopharmaceutical
    statistics, 23(4), 774–789.
    Horn, M., & Dunnett, C. W. (2004). Power and sample size comparisons of stepwise fwe and
    fdr controlling test procedures in the normal many-one case. Lecture Notes-Monograph
    Series, 48–64.
    Kwong, K. S., & Liu, W. (2000). Calculation of critical values for Dunnett and Tamhane’s
    step-up multiple test procedure. Statistics & probability letters, 49(4), 411–416.
    Li, Z., & Chuang-Stein, C. (2006). A note on comparing two binomial proportions in confirmatory
    noninferiority trials. Drug information journal, 40(2), 203–208.
    Murray, G. D. (2001). Switching between superiority and non-inferiority. British journal of
    clinical pharmacology, 52(3), 219–219.
    Nicholas, K., Yeatts, S. D., Zhao, W., Ciolino, J., Borg, K., & Durkalski, V. (2015). The
    impact of covariate adjustment at randomization and analysis for binary outcomes:
    understanding differences between superiority and noninferiority trials. Statistics in
    medicine, 34(11), 1834–1840.
    Stefansson, G., Kim, W.-C., & Hsu, J. C. (1988). On confidence sets in multiple comparisons.
    Statistical Decision Theory and Related Topics IV, 2, 89–104.
    Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the
    number of observations is large. Transactions of the American Mathematical society,
    54(3), 426–482.

    下載圖示 校內:2021-07-19公開
    校外:2021-07-19公開
    QR CODE