| 研究生: |
廖明鴻 Liao, Ming-Hung |
|---|---|
| 論文名稱: |
卡爾曼濾波器法於動脈壁局部點性質識別之離體驗證 In-vitro Validation of Kalman Filter-based Identification of Focal Arterial Wall Properties |
| 指導教授: |
陸鵬舉
Lu, Pong-Jeu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 仿生循環平台 、卡爾曼濾波器 、參數識別 、單點量測 |
| 外文關鍵詞: | Mock circulation loop, Kalman filter, Parameter Identification, Single-point measurement |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主旨為探討卡爾曼濾波器於動脈壁局部單點性質之計算方法驗證,此計算方法是利用單點量測的方式,能早期診斷出病人的動脈局部是否有硬化的現象。參數識別過程需以狀態-空間方程式定義血管內壓力、流量(或流速)及直徑變化之關係式,並代入三種量測方法分別為壓力-流量(pq)、壓力-流速(pU)及徑-流速(DU)法;其中DU法可藉由非侵入式的超音波量測重建血管內壓力波形,此方法可解決長久以來需靠侵入式量測壓力值之問題。因此本研究為建構一套仿生理循環測試平台,用實驗的方式來探討此計算方法,其中動脈端為使用局部硬化及均勻硬化的矽膠人工血管代表,用來模擬不同血管硬化現象。實驗方法為在測試台的動脈端局部單點量取流量、壓力及直徑變化並代入壓力-流量(pq)、壓力-流速(pU)及徑-流速(DU)法;儘管量測中包含許多量測誤差,如雜訊(noise)、偏差(bias)、純量因子誤差(scale factor error),但藉由以卡爾曼濾波器為基礎之識別系統仍可準確的識別出血管壁特徵,如截面積、脈動波速及楊氏係數。當識別均勻硬化血管的特徵時,以非侵入式的直徑-流速法最為準確,其誤差小於4%。識別局部硬化血管時,三種方法皆能有效識別出血管硬化的區域及趨勢,因此可證實此計算方法可用於動脈壁之診斷。以DU法重建局部硬化血管內壓力波形之最大偏差約為20 mmHg,可於未來修正計算方法以達到估測之準確性。
The objective of the present research was to verify the validity of a newly proposed Kalman filter-based state estimator and parameter identification procedure that can assess the arterial stiffness based on point-wise measurements. This identification procedure needs a state-space model to define the relationships among pressure, flowrate (or velocity) and vessel cross-sectional area. Variants in state-space formulation includes Pressure-Flowrate (pq), Pressure-Velocity (pU) and Diameter-Velocity (DU) identification systems. Specifically, DU method is associated with the advancement of non-invasive vascular ultrasonography because it can provide an in-situ pressure waveform reconstruction which has been traditionally lacking. In order to verify these newly proposed identification methods, a mock circulation loop was constructed. On this mock loop, pressure, cross-sectional area, and volume flowrate were measured. There are two types of silicone rubber artificial arteries that were used for method evaluation. One is made of homogeneous wall material and another by sandwiching a harder segment in between two softer adjacent segments, mimicing a diseased vessel with early-stage atherosclerotic plaque. The flowrate, pressure, and diameter measured at the allocated points of the artificial descending aorta were used for validating the pq, pU and DU identification procedure. Despite the presence of measurement errors (noise, bias and scale factor error), arterial wall properties, such as the stress-free cross-sectional area, pulse wave velocity, and Young's modulus were all identified with high accuracy by these three Kalman filter-based identification systems. The ultrasound-related DU method was found to be most accurate. It shows that DU method can achieve a parameter identification error less than 4% for uniform vessel wall stiffness. All three methods, pq, pU and DU, can unambiguously capture the vascular property jump appearing in the atherosclerotic juncture and the diseased segment, indicating the potential of the present methods to be used in aortic wall prognosis. Pressure waveform reconstructed by DU suffers inaccuracy (~20 mmHg) around the juncture of the atherosclerotic site, which warrants further investigation to improve the present identification accuracy.
[1] Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, and Laurent S: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39: 10-15, 2002.
[2] Cecelja M, and Chowienczyk P: Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 54: 1328-1336, 2009.
[3] Fernandes VR, Polak JF, Cheng S, Rosen BD, Carvalho B, Nasir K, McClelland R, Hundley G, Pearson G, O’Leary DH, Bluemke DA, and Lima JA: Arterial stiffness is associated with regional ventricular systolic and diastolic dysfunction: the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 28: 194-201, 2008.
[4] Laurent S, and Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension: Hypertension 49: 1202-1206, 2007.
[5] Laurent S, and Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, and Benetos A: Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236-1241, 2001.
[6] Safar M: Therapeutic trials and large arteries in hypertension. Am Heart J 115:702-710, 1988.
[7] Safar ME, Levy BI, and Struijker-Boudier H: Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular disease. Circulation 107:2864-2869, 2003.
[8] Van Bortel LM, Struijker-Boudier HA, and Safar ME: Pulse pressure, arterial stiffness, and drug treatment of hypertension. Hypertension 38: 914-921, 2001.
[9] Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, and Struijker-Boudier H: Expert consensus document on arterial stiffness: methodological issues and clinical applications. EurHeart J 27: 2588-2605, 2006.
[10] Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, and Jeppesen J: Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113: 664-670, 2006.
[11] Nichols WW, O’Rourke MF, Hartley C, and McDonald DA (ed): McDonald’s blood flow in arteries: theoretic, experimental, and clinical principle, 4th ed. London: Ewdin Arnold, 1998.
[12] Davies J, Whinnett Z, Francis D, Manisty C, Willson K, Foale R, Malik I, Hughes A, Parker K, and Mayet J: Evidence of a dominant backward-propagating “suction” wave, responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768-1778, 2006.
[13] Davies JI, and Struthers AD: Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens 21:463-472, 2003.
[14] Kolyva C, Spaan JAE, Piek JJ, and Siebes M: Windkesselness of coronary arteries hampers assessment of human coronary wave speed by single-point technique. Am J Physiol Heart Circ Physiol 295: H482-H490, 2008.
[15] Siebes M, Kolyva C, Verhoeff BJ, Piek JJ, and Spaan JA: Potential and limitations of wave intensity analysis in coronary arteries. Med Biol Eng Comput 47: 233-239, 2009.
[16] Siebes M, Verhoeff Bj, Meuwissen M, de Winter RJ, Spaan JA, and Piek JJ: Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109: 756-762, 2004.
[17] Sun YH, Anderson TJ, Parker KH, and Tyberg JV: Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol 89: 1636-1644, 2000.
[18] Parker KH, and Jones CJH: Forward and backward running waves in the arteries – analysis using the method of characteristics. J Biomech Eng 112: 322-326, 1990.
[19] Parker KH: An introduction to wave intensity analysis. Med Biol Eng Comput 47: 175-188, 2009.
[20] Alastruey J: Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed. J Biomech 44: 885-891, 2011.
[21] Feng J, and Khir AW: Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech 43: 455-462, 2010.
[22] Khir AW, O’Brien A, Gibbs JSR, and Parker KH: Determination of wave speed and separation in the arteries. J Biomech 34: 1145-1155, 2001.
[23] Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, and Mayet J: Use of simultaneous pressure and velocity measurement to estimate arterial wave speed at a single site in humans. Am J Physiol Heart Circ Physiol 290:H878-H885, 2006.
[24] Sugawara M, Niki K, Ohte N, Okada T, and Harada A: Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197-206, 2009.
[25] Lu PJ, and Hung CH: Theory and Kalman Filter Identification of Arterial Stiffness, Stress-free Lumen Diameter and Pulse Wave Velocity Using Single-point Measurement,” submitted to in American Journal of Physiology: Heart and Circulation Physiology.
[26] Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, and Larsen J: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28: 1281-1299, 2000.
[27] Evans DH, and McDicken WN (ed): Doppler ultrasound physics, instrumentation, and clinical applications. 2nded. Chichester, England: Wiley & Sons Ltd., 2000.
[28] Hoskins P (ed): Diagnostic ultrasound : physics and equipment. London, UK: Greenwich Medical Media.
[29] Pellett AA, and Kerut EK: The doppler equation. Echocardiography 21: 197-198, 2004.
[30] Schober P, Loer SA and Schwarte LA: Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth Analg 109: 340-353, 2009.
[31] Tanaka M, Sugawara M, Niki K, Izumi T, Kodera H, Okada T, and Harada A: Comparison of two ultrasonic methods of one-point measurement of pulse wave velocity-where two set the echo-tracking positions, in the adventitia or intima? IFMBE Proc 25: 518-520, 2010.
[32] Gelb A (ed): Applied optimal estimation. Cambridge MA: The M.I.T Press, 1974.
[33] Kalman RE, and Bucy RS: New result in linear filtering and prediction theory. Trans ASME J Eng 83: 95-108, 1961.
[34] Maybeck PS (ed): Stochastic models, estimation and control, Vol. 1. New York, NY: Academic Press, 1979.
[35] Langewouters GJ, Wesseling KH, and Goedhard WJA: The Static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17: 425-436, 1984.
[36] Rosenberg G, Phillips WM, Landis DL, and Pierce WS: Design and Evaluation of the Pennsylvania State University Mock Circulatory System. ASAIO Journal 4:41-49, 1981.
[37] Milnor WR (ed): Hemodynamics. Williams & Wilkins, 1989.
[38] Sharp MK, and Dharmalingam RK: Development of a Hydraulic Model of the Human Systemic Circulation. ASAIO Journal 45:535-540, 1999.
[39] De Lazzari C, Darowski M, Ferrari G, Clemente F, and Guaragno M: Computer Simulation of Hemodynamic Parameters Changes with Left Ventricle Assist Device and Mechanical Ventilation. Computers in Biology and Medicine 30: 55-69, 2000.
[40] Stergiopulos N, Meister JJ, and Westerhof N: Evaluation of Method for Estimation of Total Arterial Compliance. American Journal of Physiology 30: 55-69, 2000.
[41] Liu Z, Brin KP, and Yin FC: Estimation of Total Arterial Compliance: Improved Method and Evaluation of Current Methods. American Journal of Physiology 268: H588-H600, 1995.
[42] Woodruff S, Sharp MK, and Pantalos GM: Compact Compliance Chamber Design for the Study of Cardiac Performance in Microgravity. ASAIO Journal 43: 316-320, 1997.
[43] Westerhof N, Lankhaar JW, and Westerhof BE: The arterial Windkessel. Med Biol Eng Comput 47:131-141, 2009.
[44] Long SY, Bi Y, et. al: New polyurethane valve in new soft artificial hearts. ASAIO Journal 35: 301-304, 1989.
[45] Stergiopulos N, Young DF, and Rogge TR: Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomechanics 25:1477-1488, 1992.
[46] Reneman RS, Meinders JM, and Hoekes APG: Non-invasive ultrasound in arterial wall dynamic in humans: what have we learned and what remains to be solved. Eur Heart J 26: 960-966, 2005.
[47] Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, and Mumford CE: A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17: 12-21, 2002.
[48] 陳瑞龍, “聚氨酯人工心瓣之製作與性能評估”,成功大學航空太工程研究所論文, 2003.
[49] 李炳宏, “反脈動主動脈側血泵輔助下之波傳現象實驗探討”,成功大學航空太空工程研究所論文, 2009.
[50] 陳耀錡, “反脈動主動脈側血泵輔助下冠狀動脈相位流之離體實驗探討”,成功大學航空太空工程研究所論文, 2011.
[51] 劉建麟, “反脈動輔助對腦血管循環之影響”,成功大學航空太空工程研究所論文, 2011.
[52] 廬奕丞, “植入解剖位置對反脈動循環輔助功效之比較”,成功大學航空太空工程研究所論文, 2012.
校內:2023-01-01公開