| 研究生: |
謝易諺 Hsieh, Yi-Yen |
|---|---|
| 論文名稱: |
以數值模擬探討進氣道角度與高度對缸內滾流及引擎性能之影響 Numerical study on the effects of port angle and height on in-cylinder tumble flow and engine performance |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 滾流 、進氣道角度 、進氣道高度 、暫態引擎流場模擬 、詳細化學反應 |
| 外文關鍵詞: | tumble, port angle, port height, transient engine flow field simulation, detailed chemistry |
| 相關次數: | 點閱:166 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對四氣門汽油引擎之進氣道進行分析,使用CFD數值模擬軟體建立三維數值模型進行。首先透過文獻回顧找出影響缸內滾流大小之進氣道幾何參數為進氣道角度(PA)與進氣道高度(PH),並藉由綜整文獻中找出PA與PH對滾流之影響趨勢,並進一步將缸徑(Bore)納入考量規納出重要無因次參數PA×PH/Bore對滾流有顯著的影響,同時也發現滾流進氣道設計有助於提升缸內滾流比。本研究透過流場測試台(flow bench)模擬驗證PA、PH、PA×PH/Bore對滾流之影響,同時針對四氣門汽油引擎之原始進氣道設計進行滾流進氣道之研改,並藉由暫態引擎流場模擬驗證滾流進氣道之效益。Flow bench模擬結果顯示低角度及低高度之進氣道有助於提升缸內滾流係數,並驗證缸內滾流係數於高氣門升程會隨PA×PH/Bore之值減小而增加。暫態冷流模擬比較四氣門汽油引擎之原始進氣道與滾流進氣道設計之差異,結果顯示滾流進氣道之進氣量增加、體積效率較高、缸內滾流比增加且隨PA×PH/Bore之值越小而越高,最佳案例之缸內滾流比於BDC提升2.04倍、於IVC提升2.07倍,峰值則可提升1.97倍。暫態燃燒模擬結果發現滾流進氣道案例之高滾流比使得壓縮行程末期仍保有較高之紊流動能,此動能有助於點火後火焰之傳播速度,縮短點火延遲,使得引擎輸出最佳之平均有效壓力提升5.39%、馬力提升5.40%、扭力提升5.41 %,油耗則減少5.15%。此外,較短的點火延遲也使得滾流進氣道案例缸內之升溫速度較快、反應速率提高,且滾流進氣道進氣效率較高,因此於EVO之汙染物排放分析發現滾流進氣道案例之CO2、CO、NOx最佳指示排放量低於原始進氣道案例。
Our research is focus on analysis of four valve gasoline engine. We use CFD software to establish three dimensional numerical model. Through the literature review, we find out the intake port geometric parameters that affect in-cylinder tumble flow are port angle (PA) and port height (PH). Then, organize the data from literature review, we find the trend of tumble with different PA or PH. Further, we find an important parameter PA×PH/Bore which have significant influence on tumble flow. And we also find tumble port design is good to increase in-cylinder tumble ratio. This study validates the influence of PA, PH and PA×PH/Bore on tumble coefficient with flow bench simulation. This study also modifies the original intake port design of four valve gasoline engine to tumble port design and validates the benefit of tumble port design with transient simulation.
[1] Y. Yoshihara, K. Nakata, D. Takahashi, T. Omura, Development of high
tumble intake-port for high thermal efficiency engines, SAE Technical
Paper 2016-01-0692, 2016.
[2] J.L. Lumley, Engines: an Introduction, Cambridge University Press,
148-150, 1999.
[3] 劉永長,內燃機原理,華中科技大學出版社,81-87,2001。
[4] S. Falfari, C. Forte, F. Brusiani, G. Bianchi, Development of a 0D model
starting from different RANS CFD tumble flow fields in order to predict
the turbulence evolution at ignition timing, SAE Technical Paper 2014-
32-0048, 2014.
[5] P.G. Hill and D. Zhang (1994), The effect of swirl and tumble on
combustion in spark-ignition engines, Progress in Energy and
Combustion Science, 20(5), 373-429.
[6] X. Yang, A. Okajima, Y. Takamoto, T. Obokata, Numerical study of
scavenging flow in poppet-valved two-stroke engines, SAE Technical
Paper 1999-01-1250, 1999.
[7] J. Zheng, Z. Zhan, H. Shen, X. Li, Simulation guided design for
developing direct injection combustion systems of gasoline engines, SAE
Technical Paper 2016-01-2313, 2016.
[8] M. Battistoni and F. Mariani, Fluid dynamic study of unthrottled part
load SI engine operations with asymmetric valve lifts, SAE Technical
Paper 2009-24-0017, 2009.
[9] H.T. Chang, C.W. Huang, K.H. Lin, W.C. Hu, Effects of intake system
with swirl and tumble valve on the combustion in a small four stroke
engine, SAE Technical Paper 2013-32-9002, 2013.
[10] A. Floch, J.V. Frank, A. Ahmed, Comparison of the effects of intakegenerated
swirl and tumble on turbulence characteristics in a 4-valve
Engine, SAE Technical Paper 952457, 1995.
[11] M. Cai, The numerical simulation of implemented by golf mortars drags
reduction, Master Thesis, Taiyuan University of Science and Technology,
2011.
[12] D.W. Bechert, W. Hage (2000), Experiments with three-dimensional
riblets as idealized model of shark skin, Experiments in Fluids, 28(5),
403-412.
[13] R.I. Bourisli and A.A. Al-Sahhaf, CFD modeling of turbulent boundary
layer flow in passive drag-reducing applications, Advances in fluid
mechanics VII, WIT Transactions on Engineering Science, 59, 79-90,
2008.
[14] H. Kui, H. Wang, W. Ni, Y Chen, J. Li (2014), Flow characteristics in
diesel helical intake port bionic with non-smooth surface, Journal of Jilin
University, 44(3), 668-674.
[15] C.H. Jeon, Y.J. Chang, K.B. Cho, K.Y. Kang, Effects of intake ports on
in-cylinder flow and lean combustion in a 4-valve Engine, SAE Technical
Paper 981048, 1997.
[16] Y.N. Kim, H.S. Ahn, K.M. Cho, W.T. Kim, J.K. Choi, The computational
investigations of the intake port inclined angle variations on the incylinder
flow patterns and the tumble ratio in SI engine, SAE Technical
Paper 2000-05-0096, 2000.
[17] Y. Yoshihara, K. Nakata, D. Takahashi, T. Omura, Development of high
tumble intake-port for high thermal efficiency engines, SAE Technical
Paper 2016-01-0692, 2016.
[18] O. Schogl, H. Edtmayer, S. Scfmidt, S. Leiber, T. Schabetsberger, Design
of a tumble-orientated intake port layout for a gasoline combustion
process used in power sport application, SAE Technical Paper 2011-32-
0589, 2011.
[19] J.W. Son, S. Lee, B. Han, W. Kim, A correlation between re-defined
design parameters and flow coefficients of SI engine intake ports, SAE
Technical Paper 2004-01-0998, 2004.
[20] S. Falfari, F. Brusiani, G. Bianchi, Assessment of the influence of intake
duct geometrical parameters on the tumble motion generation in a small
gasoline engine, SAE Technical Paper 2012-32-0095, 2012.
[21] X. Chen and Z. Zhan (2012), The effect of intake port shape on gasoline
engine combustion in cylinder, Proceedings of the FISITA 2012 World
Automotive Congress, 190, 921-930.
[22] S. Omori, K. Iwachido, M. Motomochi, O. Hirako, Effect of intake port
flow pattern on the in-cylinder tumbling air flow in multi-valve SI
engines, SAE Technical Paper 910477, 1991.
[23] Y. Qi, X. Ge, L. Dong, Numerical simulation and experimental
verification of gasoline intake port design, SAE Technical Paper 2015-
01-0379, 2015.
[24] Z. Abidin, K. Hoag, D. Mckee, N. Badain, Port design for charge motion
improvement within the cylinder, SAE Technical Paper 2016-01-0600,
2016.
[25] M. Battistoni, A. Cancellieri, F. Mariani, Steady and transient fluid
dynamic analysis of the tumble and swirl evolution on a 4V engine with
independent intake valves actuation, SAE Technical Paper 2008-01-2392,
2008.
[26] S. Falfari, G.M. Bianchi, L. Nuti, 3D CFD analysis of the influence of
some geometrical engine parameters on small PFI engine performances
- the effects on tumble motion and mean turbulent intensity distribution,
SAE Technical Paper 2012-32-0096, 2012.
[27] M. Chen, W. Zhang, X. Zhang, N. Ding, In-cylinder CFD simulation of
a new 2.0 l turbo charged GDI engine, SAE Technical Paper 2011-01-
0826, 2011.
[28] C.O. lyer and J. Yi, 3D CFD upfront optimization of the in-cylinder flow
of the 3.5 L V6 Ecoboost engine, SAE Technical Paper 2009-01-1492,
2009.
[29] E.J. Gunasekaran and S. Dhandapani, A comparison of two injectors in
mixture preparation for a high tumble GDI engine - a CFD study, SAE
Technical Paper 2012-01-0398, 2012.
[30] V. Salazar and S. Kaiser, Interaction of intake-induced flow and injection
jet in a direct-injection hydrogen-fueled engine measured by PIV, SAE
Technical Paper 2011-01-0673, 2011.
[31] J. Yi, Z. Han, J Yang, R. Anderson, N. Trigui, R. Boussarsar, Modeling
of the interaction of intake flow and fuel spray in DISI Engines, SAE
Technical Paper 2000-01-0656, 2000.
[32] Y. Liu, Y. Shen, Y. You, F. Zhao, Numerical simulation on spray
atomization and fuel-air mixing process in a gasoline direct injection
engine, SAE Technical Paper 2012-01-0395, 2012.
[33] C.R. Ferguson, Internal Combustion Engines: Applied Thermosciences,
John Wiley, 1986.
[34] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw
Hill, 1988.
[35] W.W. Pulkrabek, Engineering Fundamentals of the Internal Combustion
Engine, Prentice Hall, 1997.
[36] Y.D. Liu, M. Jia, M.Z. Xie, B. Pang (2012), Enhancement on a skeletal
kinetic model for primary reference fuel oxidation by using a semidecoupling
methodology, Energy Fuels, 26(12), 7069–7083.
[37] Convergent Science, CONVERGE Theory Manual 2.3.0., 2016.
[38] A.A. Amsden, P.J. Orourke, T.D. Butler, KIVA-II: a computer program
for chemically reactive flows with sprays, Los Alamos National
Laboratory, 1989.
[39] S. Som and S.K. Aggarwal (2010), Effects of primary breakup modeling
on spray and combustion characteristics of compression ignition engines,
Combustion and Flame, 157(6), 1179–1193.
[40] P.J. O’Rourke, Collective drop effects on vaporizing liquid sprays, Ph.D.
Thesis, Department of Mechanical and Aerospace Engineering,
Princeton University, 1981.
[41] J. Naber and R.D. Reitz, Modeling engine spray/wall impingement, SAE
Technical Paper 880107, 1988.
[42] C.O. Iyer and J. Yi, 3D CFD upfront optimization of the in-cylinder flow
of the 3.5 L V6 Ecoboost engine, SAE Technical Paper 2009-01-1492,
2009.
[43] C.C. Lee, Environmental engineering dictionary, USA:Government
Institutes, 2005.
校內:2022-09-01公開