簡易檢索 / 詳目顯示

研究生: 謝易諺
Hsieh, Yi-Yen
論文名稱: 以數值模擬探討進氣道角度與高度對缸內滾流及引擎性能之影響
Numerical study on the effects of port angle and height on in-cylinder tumble flow and engine performance
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 滾流進氣道角度進氣道高度暫態引擎流場模擬詳細化學反應
外文關鍵詞: tumble, port angle, port height, transient engine flow field simulation, detailed chemistry
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對四氣門汽油引擎之進氣道進行分析,使用CFD數值模擬軟體建立三維數值模型進行。首先透過文獻回顧找出影響缸內滾流大小之進氣道幾何參數為進氣道角度(PA)與進氣道高度(PH),並藉由綜整文獻中找出PA與PH對滾流之影響趨勢,並進一步將缸徑(Bore)納入考量規納出重要無因次參數PA×PH/Bore對滾流有顯著的影響,同時也發現滾流進氣道設計有助於提升缸內滾流比。本研究透過流場測試台(flow bench)模擬驗證PA、PH、PA×PH/Bore對滾流之影響,同時針對四氣門汽油引擎之原始進氣道設計進行滾流進氣道之研改,並藉由暫態引擎流場模擬驗證滾流進氣道之效益。Flow bench模擬結果顯示低角度及低高度之進氣道有助於提升缸內滾流係數,並驗證缸內滾流係數於高氣門升程會隨PA×PH/Bore之值減小而增加。暫態冷流模擬比較四氣門汽油引擎之原始進氣道與滾流進氣道設計之差異,結果顯示滾流進氣道之進氣量增加、體積效率較高、缸內滾流比增加且隨PA×PH/Bore之值越小而越高,最佳案例之缸內滾流比於BDC提升2.04倍、於IVC提升2.07倍,峰值則可提升1.97倍。暫態燃燒模擬結果發現滾流進氣道案例之高滾流比使得壓縮行程末期仍保有較高之紊流動能,此動能有助於點火後火焰之傳播速度,縮短點火延遲,使得引擎輸出最佳之平均有效壓力提升5.39%、馬力提升5.40%、扭力提升5.41 %,油耗則減少5.15%。此外,較短的點火延遲也使得滾流進氣道案例缸內之升溫速度較快、反應速率提高,且滾流進氣道進氣效率較高,因此於EVO之汙染物排放分析發現滾流進氣道案例之CO2、CO、NOx最佳指示排放量低於原始進氣道案例。

    Our research is focus on analysis of four valve gasoline engine. We use CFD software to establish three dimensional numerical model. Through the literature review, we find out the intake port geometric parameters that affect in-cylinder tumble flow are port angle (PA) and port height (PH). Then, organize the data from literature review, we find the trend of tumble with different PA or PH. Further, we find an important parameter PA×PH/Bore which have significant influence on tumble flow. And we also find tumble port design is good to increase in-cylinder tumble ratio. This study validates the influence of PA, PH and PA×PH/Bore on tumble coefficient with flow bench simulation. This study also modifies the original intake port design of four valve gasoline engine to tumble port design and validates the benefit of tumble port design with transient simulation.

    摘要 ............................................................................................................. i 誌謝 ........................................................................................................... iv 目錄 ............................................................................................................ v 表目錄 ....................................................................................................... ix 圖目錄 ........................................................................................................ x 縮寫說明 ................................................................................................ xvii 符號說明 ................................................................................................. xix 第一章 緒論 ............................................................................................... 1 1-1 研究背景與動機 ............................................................................ 1 1-2 缸內滾流之產生與重要性 ............................................................ 2 1-2-1 缸內氣流運動 ...................................................................... 2 1-2-2 缸內滾流之產生與重要性 ................................................. 3 1-3 缸內滾流改善方法 ........................................................................ 5 1-4 研究目的與討論 .......................................................................... 11 1-5 本文架構 ...................................................................................... 11 第二章 進氣道研改方法 ......................................................................... 13 2-1 進氣道設計參數對滾流之影響分析.......................................... 13 2-2 進氣道角度之研改方法 .............................................................. 20 2-3 進氣道高度之研改方法 .............................................................. 22 2-4 滾流進氣道之研改方法 .............................................................. 24 第三章 模擬方法 ..................................................................................... 28 3-1 引擎幾何諸元與計算域 .............................................................. 28 3-1-1 LKF5 測試引擎諸元 ......................................................... 28 3-1-2 Flow bench 模擬之計算域 ................................................ 30 3-1-3 暫態模擬之計算域............................................................ 30 3-2 統御方程式與物理模型 .............................................................. 31 3-2-1 統御方程式 ........................................................................ 31 3-2-2 紊流模型 ............................................................................ 33 3-2-3 燃燒模型 ............................................................................ 38 3-2-4 噴霧模型 ............................................................................ 39 3-3 燃油C8H18之熱物性質 ............................................................... 42 3-4 Flow bench 模擬設定 .................................................................. 45 3-4-1 Flow bench 模型之計算網格建立 .................................... 45 3-4-2 穩態模擬之初始與邊界條件設定 ................................... 46 3-5 暫態模擬設定 .............................................................................. 47 3-5-1 暫態模型之計算網格 ....................................................... 47 3-5-2 暫態模擬之初始條件與邊界條件設定 ........................... 48 3-5-3 燃燒與噴油設定................................................................ 51 3-6 數值方法 ...................................................................................... 54 3-7 流場指標之計算 .......................................................................... 56 3-7-1 流量係數 ............................................................................ 56 3-7-2 滾流係數 ............................................................................ 57 3-7-3 滾流比 ................................................................................ 57 3-7-4 混合指標 ............................................................................ 58 3-7-5 燃燒效率 ............................................................................ 58 第四章 進氣道角度與高度對缸內滾流之影響 ..................................... 59 4-1 進氣道角度對缸內滾流影響之穩態模擬 ................................. 59 4-2 進氣道高度對缸內滾流影響之穩態模擬 ................................. 62 4-3 進氣道角度與高度之綜合影響 .................................................. 66 4-4 滾流進氣道對缸內滾流影響之穩態模擬 ................................. 68 4-5 小結 .............................................................................................. 70 第五章 PA×PH/Bore 對缸內滾流影響之暫態模擬 ............................... 71 5-1 暫態冷流模擬 .............................................................................. 71 5-1-1 PA×PH/Bore 對缸內流場之影響 ...................................... 71 5-1-2 PA×PH/Bore 對滾流影響之綜合比較.............................. 76 5-2 暫態燃燒模擬 .............................................................................. 83 5-2-1 PA×PH/Bore 對燃燒之影響 .............................................. 83 5-2-2 PA×PH/Bore 對引擎性能與排放之影響.......................... 89 5-3 小結 ............................................................................................ 107 第六章 結論 ........................................................................................... 110 參考文獻 ................................................................................................ 113 附錄: 多孔料餅熱傳導模擬 .................................................................. 118 A-1 多孔料餅之熱傳途徑 ................................................................ 118 A-2 平行有限矩形面之角係數公式 ................................................ 119 A-3 角係數積分方程式推導 ............................................................ 120 A-3-1 dF12 積分方程式推導 ...................................................... 120 A-3-2 dF13 積分方程式推導 ...................................................... 121 A-4 角係數積分方程式之MATLAB 數值積分 .............................. 122 A-4-1 dF12 之數值積分.m 檔 ..................................................... 122 A-4-2 dF13 之數值積分.m 檔 ..................................................... 124 A-5 多孔料餅熱傳之Fluent 使用者自訂函數 ................................ 126

    [1] Y. Yoshihara, K. Nakata, D. Takahashi, T. Omura, Development of high
    tumble intake-port for high thermal efficiency engines, SAE Technical
    Paper 2016-01-0692, 2016.
    [2] J.L. Lumley, Engines: an Introduction, Cambridge University Press,
    148-150, 1999.
    [3] 劉永長,內燃機原理,華中科技大學出版社,81-87,2001。
    [4] S. Falfari, C. Forte, F. Brusiani, G. Bianchi, Development of a 0D model
    starting from different RANS CFD tumble flow fields in order to predict
    the turbulence evolution at ignition timing, SAE Technical Paper 2014-
    32-0048, 2014.
    [5] P.G. Hill and D. Zhang (1994), The effect of swirl and tumble on
    combustion in spark-ignition engines, Progress in Energy and
    Combustion Science, 20(5), 373-429.
    [6] X. Yang, A. Okajima, Y. Takamoto, T. Obokata, Numerical study of
    scavenging flow in poppet-valved two-stroke engines, SAE Technical
    Paper 1999-01-1250, 1999.
    [7] J. Zheng, Z. Zhan, H. Shen, X. Li, Simulation guided design for
    developing direct injection combustion systems of gasoline engines, SAE
    Technical Paper 2016-01-2313, 2016.
    [8] M. Battistoni and F. Mariani, Fluid dynamic study of unthrottled part
    load SI engine operations with asymmetric valve lifts, SAE Technical
    Paper 2009-24-0017, 2009.
    [9] H.T. Chang, C.W. Huang, K.H. Lin, W.C. Hu, Effects of intake system
    with swirl and tumble valve on the combustion in a small four stroke
    engine, SAE Technical Paper 2013-32-9002, 2013.
    [10] A. Floch, J.V. Frank, A. Ahmed, Comparison of the effects of intakegenerated
    swirl and tumble on turbulence characteristics in a 4-valve
    Engine, SAE Technical Paper 952457, 1995.
    [11] M. Cai, The numerical simulation of implemented by golf mortars drags
    reduction, Master Thesis, Taiyuan University of Science and Technology,
    2011.
    [12] D.W. Bechert, W. Hage (2000), Experiments with three-dimensional
    riblets as idealized model of shark skin, Experiments in Fluids, 28(5),
    403-412.
    [13] R.I. Bourisli and A.A. Al-Sahhaf, CFD modeling of turbulent boundary
    layer flow in passive drag-reducing applications, Advances in fluid
    mechanics VII, WIT Transactions on Engineering Science, 59, 79-90,
    2008.
    [14] H. Kui, H. Wang, W. Ni, Y Chen, J. Li (2014), Flow characteristics in
    diesel helical intake port bionic with non-smooth surface, Journal of Jilin
    University, 44(3), 668-674.
    [15] C.H. Jeon, Y.J. Chang, K.B. Cho, K.Y. Kang, Effects of intake ports on
    in-cylinder flow and lean combustion in a 4-valve Engine, SAE Technical
    Paper 981048, 1997.
    [16] Y.N. Kim, H.S. Ahn, K.M. Cho, W.T. Kim, J.K. Choi, The computational
    investigations of the intake port inclined angle variations on the incylinder
    flow patterns and the tumble ratio in SI engine, SAE Technical
    Paper 2000-05-0096, 2000.
    [17] Y. Yoshihara, K. Nakata, D. Takahashi, T. Omura, Development of high
    tumble intake-port for high thermal efficiency engines, SAE Technical
    Paper 2016-01-0692, 2016.
    [18] O. Schogl, H. Edtmayer, S. Scfmidt, S. Leiber, T. Schabetsberger, Design
    of a tumble-orientated intake port layout for a gasoline combustion
    process used in power sport application, SAE Technical Paper 2011-32-
    0589, 2011.
    [19] J.W. Son, S. Lee, B. Han, W. Kim, A correlation between re-defined
    design parameters and flow coefficients of SI engine intake ports, SAE
    Technical Paper 2004-01-0998, 2004.
    [20] S. Falfari, F. Brusiani, G. Bianchi, Assessment of the influence of intake
    duct geometrical parameters on the tumble motion generation in a small
    gasoline engine, SAE Technical Paper 2012-32-0095, 2012.
    [21] X. Chen and Z. Zhan (2012), The effect of intake port shape on gasoline
    engine combustion in cylinder, Proceedings of the FISITA 2012 World
    Automotive Congress, 190, 921-930.
    [22] S. Omori, K. Iwachido, M. Motomochi, O. Hirako, Effect of intake port
    flow pattern on the in-cylinder tumbling air flow in multi-valve SI
    engines, SAE Technical Paper 910477, 1991.
    [23] Y. Qi, X. Ge, L. Dong, Numerical simulation and experimental
    verification of gasoline intake port design, SAE Technical Paper 2015-
    01-0379, 2015.
    [24] Z. Abidin, K. Hoag, D. Mckee, N. Badain, Port design for charge motion
    improvement within the cylinder, SAE Technical Paper 2016-01-0600,
    2016.
    [25] M. Battistoni, A. Cancellieri, F. Mariani, Steady and transient fluid
    dynamic analysis of the tumble and swirl evolution on a 4V engine with
    independent intake valves actuation, SAE Technical Paper 2008-01-2392,
    2008.
    [26] S. Falfari, G.M. Bianchi, L. Nuti, 3D CFD analysis of the influence of
    some geometrical engine parameters on small PFI engine performances
    - the effects on tumble motion and mean turbulent intensity distribution,
    SAE Technical Paper 2012-32-0096, 2012.
    [27] M. Chen, W. Zhang, X. Zhang, N. Ding, In-cylinder CFD simulation of
    a new 2.0 l turbo charged GDI engine, SAE Technical Paper 2011-01-
    0826, 2011.
    [28] C.O. lyer and J. Yi, 3D CFD upfront optimization of the in-cylinder flow
    of the 3.5 L V6 Ecoboost engine, SAE Technical Paper 2009-01-1492,
    2009.
    [29] E.J. Gunasekaran and S. Dhandapani, A comparison of two injectors in
    mixture preparation for a high tumble GDI engine - a CFD study, SAE
    Technical Paper 2012-01-0398, 2012.
    [30] V. Salazar and S. Kaiser, Interaction of intake-induced flow and injection
    jet in a direct-injection hydrogen-fueled engine measured by PIV, SAE
    Technical Paper 2011-01-0673, 2011.
    [31] J. Yi, Z. Han, J Yang, R. Anderson, N. Trigui, R. Boussarsar, Modeling
    of the interaction of intake flow and fuel spray in DISI Engines, SAE
    Technical Paper 2000-01-0656, 2000.
    [32] Y. Liu, Y. Shen, Y. You, F. Zhao, Numerical simulation on spray
    atomization and fuel-air mixing process in a gasoline direct injection
    engine, SAE Technical Paper 2012-01-0395, 2012.
    [33] C.R. Ferguson, Internal Combustion Engines: Applied Thermosciences,
    John Wiley, 1986.
    [34] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw
    Hill, 1988.
    [35] W.W. Pulkrabek, Engineering Fundamentals of the Internal Combustion
    Engine, Prentice Hall, 1997.
    [36] Y.D. Liu, M. Jia, M.Z. Xie, B. Pang (2012), Enhancement on a skeletal
    kinetic model for primary reference fuel oxidation by using a semidecoupling
    methodology, Energy Fuels, 26(12), 7069–7083.
    [37] Convergent Science, CONVERGE Theory Manual 2.3.0., 2016.
    [38] A.A. Amsden, P.J. Orourke, T.D. Butler, KIVA-II: a computer program
    for chemically reactive flows with sprays, Los Alamos National
    Laboratory, 1989.
    [39] S. Som and S.K. Aggarwal (2010), Effects of primary breakup modeling
    on spray and combustion characteristics of compression ignition engines,
    Combustion and Flame, 157(6), 1179–1193.
    [40] P.J. O’Rourke, Collective drop effects on vaporizing liquid sprays, Ph.D.
    Thesis, Department of Mechanical and Aerospace Engineering,
    Princeton University, 1981.
    [41] J. Naber and R.D. Reitz, Modeling engine spray/wall impingement, SAE
    Technical Paper 880107, 1988.
    [42] C.O. Iyer and J. Yi, 3D CFD upfront optimization of the in-cylinder flow
    of the 3.5 L V6 Ecoboost engine, SAE Technical Paper 2009-01-1492,
    2009.
    [43] C.C. Lee, Environmental engineering dictionary, USA:Government
    Institutes, 2005.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE