| 研究生: |
劉健恒 Liu, Jian-Heng |
|---|---|
| 論文名稱: |
阿哈諾夫-波姆奈米干涉儀中人造分子態與其電流的量子同調性 Quantum coherence of the molecular states and their corresponding currents in nanoscale Aharonov-Bohm interferometers |
| 指導教授: |
張為民
Zhang, Wei-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 量子同調性 、AB振盪 、雙量子點 、分子態 |
| 外文關鍵詞: | Quantum coherence, AB oscillation, double quantum dots, molecular state |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由考慮由彼此間有耦合的雙量子點與源極和汲極交互作用所構成的阿哈諾夫-波姆干涉儀,我們研究了鍵合態與反鍵合態以及留過該態的電流的阿哈諾夫-波姆振盪。我們分析了量子態與所對應的電流貢獻之間的關係,而這提供了有用的資訊來透過測量電流重構系統的量子態。我們也驗證了 [Phys. Rev. Lett. 106, 076801 (2011)] 實驗中「不同能量組態的鍵合態電流約略相同」的假定的適用範圍。利用量子點的量子態以及電流的同調性,我們也提供了透過磁通量調控鍵合態與反鍵合態的方法。
By considering a nanoscale Aharonov-Bohm (AB) interferometer consisting of a laterally-coupled double dot coupled to the source and drain electrodes, we investigate the AB phase dependence of the bonding and antibonding states and the transport current via the bonding and antibonding state channels. The relations of the AB phase dependence between the quantum states and the associated transport current components are analyzed, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. We obtain the validity of the experimental analysis given in [Phys. Rev. Lett. 106, 076801 (2011)] that bonding state currents in different energy configurations are almost the same.
With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states through the AB magnetic flux.
[1] D. P. DiVincenzo, Science, 270, 5234 (1995).
[2] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[3] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama,
Phys. Rev. Lett. 91, 226804 (2003).
[4] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S.
De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven,
Phys. Rev. B 67, 161308(R) (2003).
[5] J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Phys. Rev. Lett. 93, 186802 (2004).
[6] J. Gorman, D. G. Hasko, and D. A. Williams, Phys. Rev. Lett. 95, 090502
(2005).
[7] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M.
Marcus, M. P. Hanson, and A. C. Gossard, Nature (London) 435, 925
(2005).
[8] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D.
Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180
(2005).
[9] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones,
and D. A. Ritchie, Nano Lett. 10, 2789 (2010).
[10] B. M. Maune, et al. Nature 481, 344 (2012).
[11] L. Fricke, M. Wulf, B. Kaestner, V. Kashcheyevs, J. Timoshenko, P. Nazarov,
F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, T. Weimann, K. Pierz, and
H. W. Schumacher, Phys. Rev. Lett. 110, 126803 (2013).
[12] Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, X. Wu, T. S. Koh, J. K.
Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and
M. A. Eriksson, Nat. Comms. 5, 3020 (2014).
[13] T. Fujisawa, T. Hayashi, and S. Sasaki, Rep. Prog. Phys. 69, 759 (2006).
[14] R. Hanson, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod.
Phys. 79, 1217 (2007).
[15] D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K.
Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and
M. A. Erikssom, Nature, 511, 70 (2014).
[16] P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305(R) (2006).
[17] Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, Phys. Rev. Lett.
96, 087402 (2006).
[18] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Nature Phys.
5, 903 (2009).
[19] J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I.
Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, and C. M. Marcus, Nature
Nanotechnol. 8, 654 (2013).
[20] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[21] M. A. Reed, Scienti c American 268, 118 (1993).
[22] M. A. Kastner, Physics Today 46, 24 (1993).
[23] R. C. Ashoori, Nature 379, 413 (1996).
[24] L. Kouwenhoven, and C. Marcus, Physics World 11, 35 (1998).
[25] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett.
74, 4047 (1995).
[26] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman,
Nature (London) 385, 417 (1997).
[27] Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu, and H. Shtrikman, Science 290,
779 (2000).
[28] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Phys.
Rev. Lett. 87, 256802 (2001).
[29] T. Hatano, M. Stopa, W. Izumida, T. Yamaguchi, T. Ota, and S. Tarucha,
Physica E (Amsterdam) 22, 534 (2004).
[30] M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, S. E. Ulloa, W. Wegscheider, and
M. Bichler, Phys. Rev. Lett. 93, 066802 (2004).
[31] D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).
[32] K. Kang and S. Y. Cho, J. Phys. Condens. Matter 16, 117 (2004).
[33] T. Kubo, Y. Tokura, T. Hatano, and S. Tarucha, Phys. Rev. B. 74, 205310
(2006).
[34] T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha,
Phys. Rev. Lett. 106, 076801 (2011).
[35] Matisse W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 235311 (2008).
[36] J. S. Jin, Matisse W. Y. Tu, W. M. Zhang, and Y. J. Yan, New J. Phys. 12,
083013 (2010).
[37] Matisse W. Y. Tu, W. M. Zhang, J. S. Jin, O. Entin-Wohlman and A.
Aharony, Phys. Rev. B 86, 115453 (2012).
[38] P. Y. Yang, C. Y. Lin, and W. M. Zhang, Phys. Rev. B 89, 115411 (2014).
[39] Z. Hradil, Phys. Rev. A 55, R1561 (1996).
[40] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A
64, 052312 (2001).
[41] R. Blume-Kohout, Phys. Rev. Lett. 105, 200504 (2010). R. Blume-Kohout,
New J. Phys. 12, 043034 (2010).
[42] J. A. Smolin, J. M. Gambetta, and G. Smith, Phys. Rev. Lett. 108, 070502
(2012).
[43] K. R. W. Jones, Ann. Phys. (N. Y.) 207, 140 (1991).
[44] R. Schack, T. A. Brun, and C. M. Caves, Phys. Rev. A 64, 014305 (2001).
[45] G. C. Stokes, Trans. Cambridge Philos. Soc. 9, 399 (1852).
[46] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[47] D. T. Smithey, M. Beck, and M. G. Raymer, Phys. Rev. Lett. 70, 1244
(1993).
[48] U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995); A. G. White, D. F. V.
James, P. H. Eberhard, and P. G. Kwiat, Phys. Rev. Lett. 18, 3103 (1999);
N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O'Brien, G. J. Pryde,
A. Gilchrist, S. D. Bartlett, and A. G. White, Phys. Rev. Lett. 93, 053601
(2004); A. M. Bra nczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. M.
Steinberg, and D. F. V. James, New J. Phys. 14 085003 (2012);
[49] J. R. Ashburn, R. A. Cline, P. J. M. van der Burgt, W. B. Westerveld, and
J. S. Risley, Phys. Rev. A 41, 2407 (1990).
[50] T. J. Dunn, I. A. Walmsley, and S. Mukamel, Phys. Rev. Lett. 74, 884
(1995).
[51] J. J. Longdell et al., Phys. Rev. A 69, 032307 (2004); H. Ha ner et al.,
Nature 438, 643 (2005); R. Reichle et al., Nature 443, 838 (2006); L. Rippe
et al., Phys. Rev. A 77, 022307 (2008).
[52] Y. Liu, L. F. Wei, and Franco Nori, Phys. Rev. B 72, 014547 (2005); M.
Ste en et al., Science 313, 1423 (2006).
[53] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. C orcoles, B.
R. Johnson, C. A. Ryan, and M. Ste en, Phys. Rev. A 87, 062119 (2013).
[54] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848
(1988).
[55] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E.
F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J.
Phys. C: Solid State Phys. 21, L209 (1988).
[56] R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
[57] H. A. Fowler, L. Marton, J. A. Simpson, and J. A. Suddeth, J. Appl. Phys.
32, 1153 (1961).
[58] H. Boersch, H. Hamisch, K. Grohmann, and D. Wohlleben, Z. Phys. 165,
79 (1961).
[59] G. Mollenstedt and W. Bayh, Phys. Bl. 18, 299 (1962).
[60] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys.
Rev. Lett. 56, 792 (1986).
[61] C. Bruder et al., Phys. Rev. Lett. 76 114 (1996).
[62] R. A. Webb et al., Phys. Rev. Lett. 25, 2696 (1985).
[63] S. S. Buchholz et al., App. Phys. Lett. 94, 022107 (2009).
[64] L. X. Wang et al., Nature comms. 7, 10769 (2016).
[65] Y. Zhang, and A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010).
[66] H. Peng et al., Nature materials 9, 225 (2010).
[67] S. Russo et al., Phys. Rev. B 77, 085413 (2008).
[68] A. Bachtold et al., Nature 397 673 (1999).
[69] B. Kubala, and J. Konig, Phys. Rev. B 65, 245301 (2002).
[70] J. Konig, and Y. Gefen, Phys. Rev. B 65, 045316 (2002).
[71] H. A. Weidenmuller, Phys. Rev. B 68, 125326 (2003).
[72] Y. Tokura et al., New J. Phys. 9, 113 (2007).
[73] H. Lu et al., J. Phys.: Condens. Matter 18, 8961 (2006).
[74] Z. T. Jiang et al., Phys. Rev. B 66, 205306 (2002).
[75] Z. M. Bai, M. F. Yang, and Y. C. Chen, J. Phys.:Condens. Matter 16, 2053
(2004).
[76] Matisse W. Y. Tu, W. M. Zhang and J. S. Jin, Phys. Rev. B 83, 115318
(2011).
[77] Matisse W. Y. Tu, W. M. Zhang and F. Nori, Phys. Rev. B 86, 195403
(2012).
[78] H. Haug and A. P. Jauho, in Quantum Kinetics in Transport and Optics of
Semiconductors, Springer Series in Solid-State Sciences, 2nd ed. (Springer-
Verlag, Berlin, 2008), Vol. 123.
校內:2020-06-16公開