簡易檢索 / 詳目顯示

研究生: 張琪平
Jhang, Ci-Ping
論文名稱: 以石墨為基板實現優異熱管理之可撓式光感測器
Flexible Photodetectors on Graphite Substrate with Superior Heat Management
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 可撓式光感測器紫外光量子點散熱
外文關鍵詞: Flexibility, Quantum Dots, UV light, Photodetector, Thermaldissipation
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨著科技應用層面愈來愈廣泛,不同元件的整合越來越得到重視,可撓式光感測器更是其中一環。然而現今的可撓元件基板大多採用塑膠基板,雖其有良好的可撓特性,但其有不耐高溫、導熱率差等缺點,尤其隨著元件密度的上升,元件導熱率已成為顯學,可撓元件使用塑膠做為基板導熱率差的現象成為一大缺點。
    本實驗旨在解決可撓式元件散熱的問題,採用了石墨散熱片做為紫外光光感測器基板,紫外光光感測器目前在於航太、生物及軍事領域皆已廣泛的應用,故對於針對其元件的開發更是當今所需。ZnO溶液當作光感測器的氧化層薄膜,以滴塗的方式來沈積,使用此方式可以有效降低生產成本。實驗進一步使用CsPbBr3量子點吸收入射光產生電子電洞對的特性,提高薄膜吸收紫外光的效率,藉以提高光感測器之響應。
    感測器光響應度以及探測率在偏壓5V ,入射光功率55.3 mW/cm2的照射下,分別為5.93 mA/W、2.25×108 Jones。此光感測器在可撓方面也表現相當優異,元件可以在曲率半徑為1 cm的完整彎曲,並且在此彎曲半徑下彎曲1000次後元件還是擁有優異的光電流和響應度,說明其擁有良好可撓的應用。在散熱表現上,利用石墨散熱片基板製作而成的元件,相較於矽、PET基板的元件,在相同的熱源下,擁有較低的元件溫度,說明其優異的散熱性。並且紫外光光感測器目前在於軍事、生物、航太的領域有著廣泛的應用,本實驗開啟可饒式光感測器新的道路,對於未來應用領域有可饒及散熱需求時,本實驗之元件有非常大的優勢。

    The integration of different devices has attracted more and more attention, and the flexible photodetectors is one of the development trend. The flexible photodetectors almost fabricated on plastic substrates. Although it is flexible, it has the disadvantages of inability withstand high temperature, poor thermal conductivity, etc., especially with the increase of device density, the thermal conductivity of device has become significantly. Therefore, when the flexible photodetectors fabricated on plastic substrates with the poor thermal conductivity often becomes a major disadvantage.
    The purpose of this experiment is to solve the problem of heat dissipation of flexible devices. The UV light photodetector is currently widely used in aerospace, biological and military fields. In the experiment, the substrate uses a graphite heat sink as the substrate of the UV light photodetector. We used ZnO solution as the oxide layer film of the photodetector, which was grown by drop coating. This method has effectively reduced the production cost, and the use of CsPbBr3 quantum dots can absorb incident light then generating the electron-hole pairs. CsPbBr3 quantum dots is used as an important UV light-absorbing layer in this experiment, so as to generate photocurrent.
    The photoresponsivity and detectivity of the photoelectric characteristics of the device are 5.93 mA/W and 2.25×108 Jones, respectively, under the bias voltage is 5V and an incident light power of 55.30 mW/cm2. Our proposed photodetector also performs quite well about flexibility. The device can be completely bent with a radius of curvature of 1 cm, and after being bent 1000 times, the device still has outstading photoresponse, indicating that it has the excellent potential for the applications of flexible systems. In terms of heat dissipation performance, devices made of graphite heat sink substrates have a lower surface temperature than devices on silicon and PET substrates under the same heat source, indicating its excellent thermal dissipation.

    目錄 中文摘要............................................................................................................I 致謝.................................................................................................................XI 表目錄.......................................................................................................... VIII 圖目錄.............................................................................................................IX 第一章 緒論..................................................................................................... 1 1-1 前言.................................................................................................... 1 1-2 研究動機............................................................................................ 4 第二章 原理..................................................................................................... 6 2-1 量子點簡介........................................................................................ 6 2-1-1 量子侷限效應(Quantum Confinement Effect)......................... 8 2-1-2 表面效應(Surface Effect) .......................................................... 9 2-2 量子點發光運作機制 ....................................................................... 9 2-2-1 帶間復合(Band-to -band Recombination)................................. 9 2-2-2 帶-雜質能階複合 Band-to-impurity Level Recombination.... 10 2-3 量子點合成方法............................................................................... 11 2-3-1 溶膠凝膠法(Sol-gel Process)................................................... 13 2-3-2 微乳化法(Microemulsion Process).......................................... 14 2-3-3 熱注入法(Hot-solution Decomposition Process) .................... 15 2-4 CsPbBr3 量子點................................................................................ 17 2-5 光感測器氧化層............................................................................... 18 2-6 光電感測器原理 ............................................................................. 19 2-6-1 光伏效應(Photovoltaic effect, PVE) ....................................... 19 2-6-2 光電導效應(Photoconductive Effect, PCE) ............................ 20 2-6-3 光熱電效應(Photothermoelectric Effect, PTE)....................... 22 2-6-4 輻射熱效應(Bolometric Effect, BE) ....................................... 23 2-7 矽基板薄化方式 ............................................................................. 25 2-8 曲率半徑及曲率 ............................................................................. 26 2-9 傅立葉定律...................................................................................... 27 第三章 實驗材料及儀器............................................................................... 29 3-1 實驗材料.......................................................................................... 29 3-1-1 HNA 蝕刻液............................................................................. 29 3-1-2CsPbBr3 量子點 ....................................................................... 29 3-1-3 石墨高散熱可撓基板.............................................................. 29 3-2 實驗儀器........................................................................................... 30 3-2-1 微量滴管 .................................................................................. 30 3-2-2 電磁加熱攪拌器...................................................................... 30 3-2-3 超音波震洗機.......................................................................... 31 3-2-4 紫外光臭氧處理機................................................................. 32 3-2-5 分光光譜儀............................................................................. 33 3-2-6 微光激發光譜儀..................................................................... 34 3-2-7 電壓電流量測系統................................................................. 35 3-2-8 熱蒸鍍機 .................................................................................. 36 第四章 實驗步驟........................................................................................... 38 4-1 光感測器製程................................................................................... 38 4-1-1 滴塗氧化鋅(ZnO)溶液............................................................ 39 4-1-2 旋塗 CsPbBr3 量子點溶液...................................................... 39 4-1-3 蒸鍍電極 .................................................................................. 39 4-2 薄化矽基板製程............................................................................... 41 4-3 基板可撓度比較及元件可撓度結果 ............................................. 42 第五章 結果與討論....................................................................................... 43 5-1 光學顯微鏡...................................................................................... 43 5-1-1 材料構造分析.......................................................................... 43 5-1-2 元件製程結果分析.................................................................. 44 5-2 SEM 及 EDS 分析............................................................................ 47 5-3 AFM 分析......................................................................................... 51 5-4 基板可撓度比較 ............................................................................. 54 5-5 四點探針........................................................................................... 57 5-6 CsPbBr3 光致發光光譜及照光分析................................................ 59 5-7 UV-vis 吸收光譜分析..................................................................... 61 5-8 XRD 晶相分析................................................................................ 63 5-8-1 基板 XRD 分析........................................................................ 63 5-8-2 CsPbBr3量子點 XRD 分析..................................................... 65 5-9 缺少氧化層之元件光暗電流分析 .................................................. 69 5-10 滴塗不同次數 ZnO 氧化層之暗電流分析.................................. 71 5-11 電壓電流分析................................................................................. 75 5-12 光響應度(Responsivity)................................................................. 77 5-13 光探測率(Detectivity, D*)............................................................. 80 5-14 元件開關燈響應分析 .................................................................... 82 5-15 可撓式檢測..................................................................................... 84 5-16 散熱分析......................................................................................... 89 第六章 結論及未來展望............................................................................... 92 參考文獻......................................................................................................... 93

    [1] Cotta, Mônica A. "Quantum dots and their applications: what lies ahead?." ACS applied nano materials 3.6 (2020): 4920-4924.
    [2] Yang, Dezhi, and Dongge Ma. "Development of organic semiconductor photodetectors: from mechanism to applications." Advanced optical materials 7.1 (2019): 1800522.
    [3] Park, Eunhee, et al. "Self-powered high-performance ultraviolet C photodetector based on poly (9-vinyl carbazole)/SnO2 quantum dot heterojunction." Journal of Alloys and Compounds 918 (2022): 165502.
    [4] Wang, Lili, et al. "New insights and perspectives into biological materials for flexible electronics." Chemical Society Reviews 46.22 (2017): 6764-6815.
    [5] Cai, Sa, et al. "Materials and designs for wearable photodetectors." Advanced Materials 31.18 (2019): 1808138.
    [6] Li, Jingyang, et al. "Large-area, flexible broadband photodetector based on WS2 nanosheets films." Materials Science in Semiconductor Processing 107 (2020): 104804.
    [7] Sun, Yilin, et al. "Flexible broadband photodetectors enabled by MXene/PbS quantum dots hybrid structure." IEEE Electron Device Letters 42.12 (2021): 1814-1817.
    [8] Liang, Jianbo, et al. "Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications." Diamond and Related Materials 111 (2021): 108207.
    [9] Arden, Wolfgang, et al. "More-than-Moore white paper." Version 2 (2010): 14.
    [10] Cheng, Zhe, et al. "Experimental observation of high intrinsic thermal conductivity of AlN." Physical Review Materials 4.4 (2020): 044602.
    [11] Nakano, Hiromi, et al. "Microstructural characterization of high-thermal-conductivity SiC ceramics." Journal of the European Ceramic Society 24.14 (2004): 3685-3690.
    [12] Lin, Xiangwei, et al. "Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management." Journal of Cleaner Production 331 (2022): 130014.
    [13] Wu, Si, et al. "Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management." Journal of Materials Chemistry A 8.38 (2020): 20011-20020.
    [14] Qian, Lei, Debasis Bera, and Paul H. Holloway. "Temporal evolution of white light emission from CdSe quantum dots." Nanotechnology 19.28 (2008): 285702.
    [15] Samadi-Maybodi, Abdolraouf, and Reza Tirbandpay. "Synthesis, optical properties and tuning size of CdSe quantum dots by variation capping agent." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 250 (2021): 119369.
    [16] Bera, Debasis, et al. "Quantum dots and their multimodal applications: a review." Materials 3.4 (2010): 2260-2345.
    [17] Kumar, Yogesh, et al. "Colloidal ZnO quantum dots based spectrum selective ultraviolet photodetectors." IEEE Photonics Technology Letters 29.4 (2017): 361-364.
    [18] Majetich, S. A., and A. C. Carter. "Surface effects on the optical properties of cadmium selenide quantum dots." The Journal of Physical Chemistry 97.34 (1993): 8727-8731.
    [19] Smith, Andrew M., and Shuming Nie. "Semiconductor nanocrystals: structure, properties, and band gap engineering." Accounts of chemical research 43.2 (2010): 190-200.
    [20] Lim, Jaehoon, et al. "Perspective on synthesis, device structures, and printing processes for quantum dot displays." Optical Materials Express 2.5 (2012): 594-628.
    [21] Habiba, Khaled, et al. "Fabrication of nanomaterials by pulsed laser synthesis." Manufacturing nanostructures 10 (2014): 263-292.
    [22] Zazueta-Raynaud, A., et al. "Utilization of down-shifting photoluminescent ZnO quantum dots on solar cells." Materials Research Express 4.7 (2017): 076203.
    [23] Hadi, Abdul, et al. "Novel synthesis of high surface area nano-CeZrO2: transformation of the microstructure and textural properties as the effect of calcination." Advances in Natural Sciences: Nanoscience and Nanotechnology 9.4 (2018): 045015.
    [24] Sinatra, Lutfan, Jun Pan, and Osman M. Bakr. "Methods of synthesizing monodisperse colloidal quantum dots." Material Matters 12 (2017): 3-7.
    [25] Lim, Jaehoon, et al. "Perspective on synthesis, device structures, and printing processes for quantum dot displays." Optical Materials Express 2.5 (2012): 594-628.
    [26] Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. "The emergence of perovskite solar cells." Nature photonics 8.7 (2014): 506-514.
    [27] Tai, Qidong, Kai-Chi Tang, and Feng Yan. "Recent progress of inorganic perovskite solar cells." Energy & Environmental Science 12.8 (2019): 2375-2405.
    [28] Du, Xiafang, et al. "High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes." RSC advances 7.17 (2017): 10391-10396.
    [29] Zhang, Xuejie, et al. "Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display." Chemistry of Materials 28.23 (2016): 8493-8497.
    [30] Zu, Baiyi, et al. "Simple metal/SiO2/Si planar photodetector utilizing leakage current flows through a SiO2 layer." Journal of Materials Chemistry C 2.11 (2014): 2045-2050.
    [31] Qiu, Qinxi, and Zhiming Huang. "Photodetectors of 2D materials from ultraviolet to terahertz waves." Advanced Materials 33.15 (2021): 2008126.
    [32] Ezhilmaran, Bhuvaneshwari, et al. "Recent developments in the photodetector applications of Schottky diodes based on 2D materials." Journal of Materials Chemistry C 9.19 (2021): 6122-6150.
    [33] Schwartz, B., and H. Robbins. "Chemical etching of silicon: IV. Etching technology." Journal of the electrochemical society 123.12 (1976): 1903.
    [34] Zu, Hao-Ran, et al. "Circularly polarized wearable antenna with low profile and low specific absorption rate using highly conductive graphene film." IEEE Antennas and Wireless Propagation Letters 19.12 (2020): 2354-2358.
    [35] Siburian, Rikson, et al. "New route to synthesize of graphene nano sheets." (2018).
    [36] Ichikawa, Yukimi, et al. "Production technology for amorphous silicon-based flexible solar cells." Solar Energy Materials and Solar Cells 66.1-4 (2001): 107-115.
    [37] Juan, Fangying, et al. "Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods." Chemical Physics 530 (2020): 110627.
    [38] Mo, Qionghua, et al. "Room temperature synthesis of stable silica-coated CsPbBr¬3 quantum dots for amplified spontaneous emission." Photonics Research 8.10 (2020): 1605-1612.
    [39] Nezamdost, J. "Nanocrystalline Fe thin films on Si (100) substrate." European Online Journal of Natural and Social Sciences 2.4 (2013): pp-644.
    [40] Yuan, Shuai, et al. "Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes." ACS nano 12.9 (2018): 9541-9548.
    [41] Chen, Jiaxin, et al. "Recent progress of heterojunction ultraviolet
    photodetectors: materials, integrations, and applications." Advanced
    Functional Materials 30.16 (2020): 1909909.
    [42] García-Valenzuela, Jorge A., et al. "Main properties of Al2O3 thin films deposited by magnetron sputtering of an Al2O3 ceramic target at different radio-frequency power and argon pressure and their passivation effect on p-type c-Si wafers." Thin Solid Films 619 (2016): 288-296.
    [43] Chandra, Sudhir, Vivekanand Bhatt, and Ravindra Singh. "RF sputtering: A viable tool for MEMS fabrication." Sadhana 34 (2009): 543-556.
    [44] Cui, Boyao, et al. "Negative photoconductivity in low-dimensional materials." Chinese Physics B 30.2 (2021): 028507.
    [45] Pataniya, Pratik M., and C. K. Sumesh. "Low cost and flexible photodetector based on WSe2 Nanosheets/Graphite heterostructure." Synthetic Metals 265 (2020): 116400.
    [46] Li, Huiqiao, et al. "One‐dimensional CdS nanostructures: a promising candidate for optoelectronics." Advanced Materials 25.22 (2013): 3017-3037.
    [47] Wei, Te-Yu, et al. "Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors." Applied Physics Letters 96.1 (2010): 013508.
    [48] Wang, Meng, et al. "Moisture‐Triggered Self‐Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability." Advanced Materials 33.16 (2021): 2100625.
    [49] Kim, Byeong Jo, et al. "Highly efficient and bending durable perovskite solar cells: toward a wearable power source." Energy & Environmental Science 8.3 (2015): 916-921.
    [50] Liu, Jingying, et al. "Flexible, printable soft‐X‐ray detectors based on all‐inorganic perovskite quantum dots." Advanced Materials 31.30 (2019): 1901644.

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE