| 研究生: |
薛建豐 Hsueh, Jian-Feng |
|---|---|
| 論文名稱: |
動物實驗、替代測試和預測毒理學的比較,以斑馬魚及其胚胎急性毒性試驗與QSAR Toolbox為例 The comparison of animal test, alternative test and predictive toxicology, taking zebrafish (Danio rerio) and its embryo acute toxicity test and QSAR Toolbox as an example |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 魚類急毒性 、替代測試 、預測毒理學 、斑馬魚 、定量結構活性關係(QSAR) |
| 外文關鍵詞: | Acute fish toxicity test (AFT), Alternative test, Predictive toxicology, Zebrafish (Danio rerio), QSAR (Quantitative structure–activity relationship) |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統毒理學常常應用動物進行實驗,這樣的研究往往會花費大量金錢及時間,且不符合動物福祉。也因此近年來國際上的趨勢為發展替代測試進而減少金錢及時間,並符合動物福祉,其中一項具有潛力的研究方向為應用定量結構活性關係 (Quantitative structure–activity relationship, QSAR) 模型的預測毒理學。我國近年來對化學物質的管理更加嚴格,廠商需要依照化學物質的安全性以及每年所使用的噸數提供毒理及生態毒理資訊。不過,相較毒理資訊而言,生態毒理資訊的項目卻是相對缺乏的。本研究之目的為驗證及發展能減少使用動物實驗的電腦模式及斑馬魚胚胎替代模式。並且結合電腦模式及斑馬魚胚胎替代模式方法提供魚類急毒性測試終點的整合型測試策略。接著,為了測試整合型測試策略之應用性,以行政院環保署公布的106種優先登錄化學物質中,挑選至少10個物質以QSAR模型來預測毒性,使用電腦軟體為OECD QSAR Toolbox4.4版。然後,操作斑馬魚胚胎急毒性試驗推估成魚急毒性,最後再以成魚急毒性試驗驗證前兩者預測及推估魚類急毒性測試終點之準確性。研究過程中,實驗手法驗證以標準物質3,4-DCA,驗證斑馬魚成魚的魚類急毒性試驗及斑馬魚胚胎急毒性試驗,兩種實驗的分析結果大多都在1個標準差的範圍內,因此本研究通過了兩種實驗的手法驗證。並且完成了十幾種物質的魚類急毒性試驗及斑馬魚胚胎急毒性試驗。在QSAR模型的電腦預測和胚胎的替代測試中,對於成魚急毒性分別有良好的預測及推估能力,而分辨率分別為73.3%和76.6%。最後我們提出了結合兩種替代方法的整合型測試策略,並發現對物質毒性的分辨率提高至93.3%。本研究的結果顯示整合型測試策略能夠減少動物實驗,並以替代測試方法提供生態毒理資訊的魚類急毒性測試終點,也能夠有效率的分類物質的魚類急毒性。
We often utilize animal tests in traditional toxicology, such researches cost lots of money and time. In addition, they are not aligned with animal welfare. The international trend is to develop alternative tests to reduce money and time, which can reduce utilizing animals and close to animal welfare. For our concern of ecotoxicology endpoint, acute fish toxicity test (AFT), is a traditional animal test. There are two alternative tests trying to reduce AFT test, in vitro and in silico, respectively. For in vitro, fish embryo toxicity test is announced as a standard protocol, OECD TG236. For in silico, one of the predictive toxicology methods is to utilize quantitative structure-activity relationship (QSAR) model. In recent years, our country has stricter management of chemical substances and must provide information on the (eco)toxicity of substances by the tonnage of utilization. However, we found that it lacks of ecotoxicology than toxicology information. The objective is to validate and develop methods that can reduce the use of animal tests with zebrafish embryo alternative tests and by computer models. Then, the zebrafish embryo alternative tests and computer model methods are combined to provide an integrated testing strategy (ITS) of AFT test endpoint. The ITS is combined by OECD QSAR Toolbox version 4.4 and OECD TG236. To develop the ITS, the study considered proper experiment without any animal tests. Moreover, we would choose some substances operate the AFT test to validate the ITS results.
Ahlers, J., Nendza, M., & Schwartz, D. (2019). Environmental hazard and risk assessment of thiochemicals. Application of integrated testing and intelligent assessment strategies (ITS) to fulfil the REACH requirements for aquatic toxicity. Chemosphere, 214, 480-490. doi:10.1016/j.chemosphere.2018.09.082
Bambino, K., & Chu, J. (2017). Zebrafish in Toxicology and Environmental Health. In K. C. Sadler (Ed.), Zebrafish at the Interface of Development and Disease Research (Vol. 124, pp. 331-367). San Diego: Elsevier Academic Press Inc.
Belanger, S. E., Rawlings, J. M., & Carr, G. J. (2013). Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environmental Toxicology and Chemistry, 32(8), 1768-1783. doi:10.1002/etc.2244
Belanger, S. E., Rawlings, J. M., & Stackhouse, R. (2018). Advances in understanding the response of fish to linear alcohols in the environment. Chemosphere, 206, 539-548. doi:10.1016/j.chemosphere.2018.04.152
Birke, A., & Scholz, S. (2019). Zebrafish Embryo and Acute Fish Toxicity Test Show Similar Sensitivity for Narcotic Compounds. Altex-Alternatives to Animal Experimentation, 36(1), 131-135. doi:10.14573/altex.1808101
Bohlen, M. L., Jeon, H. P., Kim, Y. J., & Sung, B. (2019). In Silico Modeling Method for Computational Aquatic Toxicology of Endocrine Disruptors: A Software-Based Approach Using QSAR Toolbox. Jove-Journal of Visualized Experiments(150), 15. doi:10.3791/60054
Brown, A. C., & Fraser, T. R. (1868). V.—On the Connection between Chemical Constitution and Physiological Action. Part. I.—On the Physiological Action of the Salts of the Ammonium Bases, derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. Transactions of the Royal Society of Edinburgh, 25(1), 151-203. doi:10.1017/S0080456800028155
Burden, N., Maynard, S. K., Weltje, L., & Wheeler, J. R. (2016). The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Regulatory Toxicology and Pharmacology, 80, 241-246. doi:https://doi.org/10.1016/j.yrtph.2016.05.032
Choudhuri, S., Patton, G. W., Chanderbhan, R. F., Mattia, A., & Klaassen, C. D. (2018). From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicological Sciences, 161(1), 5-22. doi:10.1093/toxsci/kfx186
Dimitrov, S. D., Diderich, R., Sobanski, T., Pavlov, T. S., Chankov, G. V., Chapkanov, A. S., . . . Mekenyan, O. G. (2016). QSAR Toolbox - workflow and major functionalities. Sar and Qsar in Environmental Research, 27(3), 203-219. doi:10.1080/1062936x.2015.1136680
Douglas, M. T., Chanter, D. O., Pell, I. B., & Burney, G. M. (1986). A PROPOSAL FOR THE REDUCTION OF ANIMAL NUMBERS REQUIRED FOR THE ACUTE TOXICITY TO FISH TEST (LC50 DETERMINATION). Aquatic Toxicology, 8(4), 243-249. doi:10.1016/0166-445x(86)90076-7
Ferdowsian, H. R., & Beck, N. (2011). Ethical and Scientific Considerations Regarding Animal Testing and Research. Plos One, 6(9), 4. doi:10.1371/journal.pone.0024059
Groth, G., Schreeb, K., Herdt, V., & Freundt, K. J. (1993). TOXICITY STUDIES IN FERTILIZED ZEBRAFISH EGGS TREATED WITH N-METHYLAMINE, N,N-DIMETHYLAMINE, 2-AMINOETHANOL, ISOPROPYLAMINE, ANILINE, N-METHYLANILINE, N,N-DIMETHYLANILINE, QUINONE, CHLOROACETALDEHYDE, OR CYCLOHEXANOL. Bulletin of Environmental Contamination and Toxicology, 50(6), 878-882.
Hansch, C. (1969). A QUANTITATIVE APPROACH TO BIOCHEMICAL STRUCTURE-ACTIVITY RELATIONSHIPS. Accounts of Chemical Research, 2(8), 232-&. doi:10.1021/ar50020a002
Hansch, C., Maloney, P. P., & Fujita, T. (1962). CORRELATION OF BIOLOGICAL ACTIVITY OF PHENOXYACETIC ACIDS WITH HAMMETT SUBSTITUENT CONSTANTS AND PARTITION COEFFICIENTS. Nature, 194(4824), 178-&. doi:10.1038/194178b0
Kienzler, A., Barron, M. G., Belanger, S. E., Beasley, A., & Embry, M. R. (2017). Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches. Environmental Science & Technology, 51(17), 10203-10211. doi:10.1021/acs.est.7b02337
Krewski, D., Acosta, D., Jr., Andersen, M., Anderson, H., Bailar, J. C., 3rd, Boekelheide, K., . . . Zeise, L. (2010). Toxicity testing in the 21st century: a vision and a strategy. Journal of toxicology and environmental health. Part B, Critical reviews, 13(2-4), 51-138. doi:10.1080/10937404.2010.483176
Lammer, E., Carr, G. J., Wendler, K., Rawlings, J. M., Belanger, S. E., & Braunbeck, T. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 149(2), 196-209. doi:10.1016/j.cbpc.2008.11.006
Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): A review. Aquaculture, 269(1-4), 1-20. doi:10.1016/j.aquaculture.2007.04.077
Lombardo, A., Roncaglioni, A., Benfenati, E., Nendza, M., Segner, H., Jeram, S., . . . Schüürmann, G. (2014). Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS). Environmental Research, 135, 156-164. doi:https://doi.org/10.1016/j.envres.2014.09.002
Luechtefeld, T., Marsh, D., Rowlands, C., & Hartung, T. (2018). Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility. Toxicological Sciences, 165(1), 198-212. doi:10.1093/toxsci/kfy152
Nagel, R. (2002). DarT: The embryo test with the zebrafish Danio rerio - a general model in ecotoxicology and toxicology. Altex-Alternativen Zu Tierexperimenten, 19, 38-48.
Nanjing Institute of Environmental Sciences, C., National Institute for Environmental Studies, J., Chemicals Evaluation and Research Institute, J., National Institute of Environmental Research, K., & Korea Conformity Laboratories, K. (2017). Comparison of fish acute toxicity tests using zebrafish reports from China, Japan and Korea - 3,4-Dichloroaniline -
Nendza, M., Muller, M., & Wenzel, A. (2017). Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies. Environmental Science-Processes & Impacts, 19(3), 429-437. doi:10.1039/c6em00600k
OECD. (2011). VALIDATION REPORT (PHASE 1) FOR THE ZEBRAFISH EMBRYO TOXICITY TEST PART I OECD Series on Testing and Assessment 157. The OECD observer. Organisation for Economic Co-operation and Development, 157.
OECD. (2012). VALIDATION REPORT (PHASE 2) FOR THE ZEBRAFISH EMBRYO TOXICITY TEST I OECD Series on Testing and Assessment 179. The OECD observer. Organisation for Economic Co-operation and Development, 25.
OECD. (2013). Test No. 236: Fish Embryo Acute Toxicity (FET) Test.
OECD. (2019). Test No. 203: Fish, Acute Toxicity Test.
Pizzo, F., Gadaleta, D., Lombardo, A., Nicolotti, O., & Benfenati, E. (2015). Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chemistry Central Journal, 9. doi:10.1186/s13065-015-0139-7
Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley interdisciplinary reviews. Computational molecular science, 6(2), 147-172. doi:10.1002/wcms.1240
Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews-Computational Molecular Science, 6(2), 147-172. doi:10.1002/wcms.1240
Rand, G. M. (1995). Fundamentals Of Aquatic Toxicology: Effects, Environmental Fate And Risk Assessment: Taylor & Francis.
REGULATION(EC)No1223. (2009). REGULATION (EC) No 1223/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 November 2009 on cosmetic products. Retrieved from https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf
Rovida, C., Alepee, N., Api, A. M., Basketter, D. A., Bois, F. Y., Caloni, F., . . . Hartung, T. (2015). Integrated Testing Strategies (ITS) for Safety Assessment. Altex-Alternatives to Animal Experimentation, 32(1), 25-40. doi:10.14573/altex.1411011
Russell, W. M. S., & Burch, R. L. (1959). The Principles of Humane Experimental Technique, 1959. Retrieved from http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc
Sambuy, Y., Bassi, A. M., Scanarotti, C., & Caloni, F. (2017). From Cells to QSAR: Alternative predictive models in toxicology. Altex-Alternatives to Animal Experimentation, 34(1), 167-171.
Schmidt, S., Busch, W., Altenburger, R., & Kuster, E. (2016). Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio). Chemosphere, 152, 503-512. doi:10.1016/j.chemosphere.2016.03.006
Schuurmann, G., Ebert, R. U., & Kuhne, R. (2011). Quantitative Read-Across for Predicting the Acute Fish Toxicity of Organic Compounds. Environmental Science & Technology, 45(10), 4616-4622. doi:10.1021/es200361r
Settivari, R., Ball, N., Murphy, L., Rasoulpour, R., Boverhof, D., & Carney, E. (2015). Predicting the Future: Opportunities and Challenges for the Chemical Industry to Apply 21st-Century Toxicity Testing. Journal of the American Association for Laboratory Animal Science : JAALAS, 54, 214-223.
Settivari, R. S., Ball, N., Murphy, L., Rasoulpour, R., Boverhof, D. R., & Carney, E. W. (2015). Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing. Journal of the American Association for Laboratory Animal Science, 54(2), 214-223.
Sobanska, M., Scholz, S., Nyman, A. M., Cesnaitis, R., Alonso, S. G., Kluver, N., . . . De Coen, W. (2018). Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). Environmental Toxicology and Chemistry, 37(3), 657-670. doi:10.1002/etc.4055
UN. (2001). Chapter 14: HAZARDOUS TO THE AQUATIC ENVIRONMENT Globally Harmonized System for the Classification and Labelling of Chemicals (GHS).
USEPA. (2008). Tox21 - Toxicology in the 21st Century. Retrieved from https://tox21.gov/
Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Christapher, P. V., & Agrawal, R. K. (2011). Validation of QSAR Models - Strategies and Importance (Vol. 2).
Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44(8), 1711-1721. doi:https://doi.org/10.1016/S0045-6535(00)00520-8
Wedebye, E. B., Dybdahl, M., Nikolov, N. G., Jonsdottir, S. O., & Niemela, J. R. (2015). QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project. Reproductive Toxicology, 55, 64-72. doi:10.1016/j.reprotox.2015.03.002
Yordanova, D., Schultz, T. W., Kuseva, C., Ivanova, H., Pavlov, T., Chankov, G., . . . Mekenyan, O. G. (2019). Alert performance: A new functionality in the OECD QSAR Toolbox. Computational Toxicology, 10, 26-37. doi:https://doi.org/10.1016/j.comtox.2018.12.003
行政院農業委員會. (2019). 107年度實驗動物人道管理年報.
法務部全國法規資料庫. (2019). 新化學物質及既有化學物質資料登錄辦法-附表七:既有化學物質標準登錄-登錄資料項目.