簡易檢索 / 詳目顯示

研究生: 曾冠文
Tseng, Kuan-Wen
論文名稱: 4-溴苯乙烯在銅(100)和氧/銅(100)表面的吸附與反應
Adsorption and Reactions of 4-Bromostyrene on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 4-溴苯乙烯銅(100)氧/銅(100)超高真空系統程序控溫反應/脫附反射-吸收紅外光譜儀X光光電子光譜密度泛函理論計算
外文關鍵詞: 4-Bromostyrene, Cu(100), O/Cu(100), Ultra-High Vacuum System, Temperature-Programmed Reaction/Desorption(TPR/D), Reflection Absorption Infrared Spectroscopy(RAIRS), X-ray Photoelectron Spectroscopy(XPS), Density Functional Theory
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文報導4-bromostyrene在Cu(100)和O/Cu(100)的吸附、熱反應。我們利用程序控溫反應/脫附(TPR/D)、反射-吸收紅外光譜(RAIRS)、X-光光電子譜(XPS)等表面分析技術偵測吸附、追蹤反應,密度泛函理論計算(DFT calculation)則是提供分子吸附結構、吸附位置、吸附能等資料。我們總合這些實驗、理論結果提出4-bromostyrene於Cu(100)、O/Cu(100)上的反應機制。
    TPR/D的研究指出4-bromostyrene為物理性地吸附於Cu(100)表面,多層吸附分子在204 K脫附,第一層吸附分子則在226 K脫附。部分第一層分子也會分解,產生ethylbenzene和H2。RAIRS及XPS的結果顯示4-bromostyrene/Cu(100)是先進行C–Br斷鍵解離(~205 K),形成–C6H4CHCH2中間物及溴原子(Br(ad))。–C6H4CHCH2在~450 K反應產生ethylbenzene脫附, –C6H4CHCH2分解所產生的含H碎片則於較高溫度持續失氫,生成H2。DFT計算結果顯示4-bromostyrene以近於平行的方式吸附於Cu(100)表面,吸附能為13.8 kcal mol-1。
    4-Bromostyrene/O/Cu(100)系統的熱反應產物有H2、H2O、CO、CO2。RAIRS及XPS的光譜顯示4-Bromostyrene可能在~215 K與O(ad)反應而形成–OC6H4CHCH2及吸附的溴原子(Br(ad))。–OC6H4CHCH2/O/Cu(100)升溫至450 K後,出現H2O、CO2、CO、H2產物脫附,它們來自–OC6H4CHCH2與O(ad)的反應。

    In this research, we investigate the adsorption, desorption and thermal reactions of 4-bromostyrene on Cu(100) and O/Cu(100), using temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). Density functional theory calculations have also been performed for the adsorption structure and energy of surface species.
    The TPR/D results show that 4-bromostyrene desorption from the multilayer molecules and first layer molecules on Cu(100) occurs at 204 K and 226 K, respectively. Parts of the first layer molecules decompose on the surface as well. The studies of RAIRS and XPS show that 4-bromostyrene undergoes C–Br bond scission first at ~205 K, forming –C6H4CHCH2. This intermediate further reacts to generate ethylbenzene at 450 K and H2 above 450 K. The adsorption energy of 4-bromostyrene, with an approximate parallel geometry on Cu(100), is calculated to be 13.8 kcal mol-1.
    On O/Cu(100), the thermal reaction of 4-bromostyrene results in the desorption of H2、H2O、CO and CO2 above ~450 K. The reaction intermediate is found to be
    –OC6H4CHCH2 at 215 K, instead of –C6H4CHCH2.

    摘要Ⅰ 第一章 緒論1 1.1表面化學的重要歷程1 1.2表面的定義1 1.3表面吸附與反應3 1.4真空3 1.5 研究動機5 第二章 表面研究技術14 2.1 程序控溫反應/脫附(Temperature-Programmed Reaction/Desorption,TPR/D) 14 2.2 反射-吸收紅外光譜儀(Reflection Absorption Infrared Spectroscopy, RAIRS) 18 2.3 X-光光電子譜(X-ray Photoelectron Spectroscopy, XPS) 21 第三章 真空系統23 3.1 超高真空系統23 3.2真空幫浦25 3.2.1機械幫浦25 3.2.2渦輪分子幫浦26 3.2.3離子幫浦27 3.2.4鈦昇華幫浦28 第四章 實驗前處理30 4.1 Cu單晶前處理30 4.2 O/Cu(100)單晶製備30 4.3 實驗藥品前處理31 第五章 結果與討論33 5.1 4-Bromostyrene/Cu(100)的TPR/D、RAIRS、XPS的研究33 5.1.1 4-Bromostyrene/Cu(100)的程序控溫反應/脫附(TPR/D)研究33 5.1.2 4-Bromostyrene/Cu(100)的反射-吸收紅外光譜(RAIRS)研究43 5.1.3 4-Bromostyrene/Cu(100)的X-光光電子譜(XPS)研究47 5.1.4 4-Bromostyrene/Cu(100)的Density Functional Theory (DFT)研究51 5.2 4-Bromostyrene/Cu(100)的脫附、熱反應總結說明63 5.3 4-Bromostyrene/O/Cu(100)的TPR/D、RAIRS、XPS的研究64 5.3.1 4-Bromostyrene/O/Cu(100)的程序控溫反應/脫附(TPR/D)研究64 5.3.2 4-Bromostyrene/O/Cu(100)的反射-吸收紅外光譜(RAIRS)研究69 5.3.3 4-Bromostyrene/O/Cu(100)的X-光光電子譜(XPS)研究71 5.4 4-Bromostyrene/O/Cu(100)熱反應中間物(–OC6H4CHCH2)的Density Functional Theory (DFT)研究74 5.5 4-Bromostyrene/O/Cu(100)的脫附、熱反應總結說明79 第六章 結論80 參考文獻81

    1. Hagen, J. Industrial Catalysis: A Practical Approach. Wiley-VCH: Weinheim, 2015.
    2. Offermans, W. K.; Jansen, A. P. J.; Van Santen, R. A. Ammonia Activation on Platinum {1 1 1}: A Density Functional Theory Study. Surf. Sci. 2006, 600, 1714 –1734.
    3. Ullmann, F.; Elvers, B. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH: Weinheim, 2011.
    4. Karatok, M.; Sensoy, M. G.; Vovk, E. I.; Ustunel, H.; Toffoli, D.; Ozensoy, E. Formaldehyde Selectivity in Methanol Partial Oxidation on Silver: Effect of Reactive Oxygen Species, Surface Reconstruction, and Stability of Intermediates. ACS Catal. 2021, 11, 6200–6209.
    5. Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.; Müllen, K.; Fasel, R. Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16676.
    6. Balema, T. A.; Miao, J.; Wasio, N. A.; Murphy, C. J.; Larson, A. M.; Patel, D. A.; Lin Y. S.; Sykes, E. C. H. Visualizing and Understanding Ordered Surface Phases during the Ullmann Coupling Reaction. J. Phys. Chem. C 2021, 125, 7675–7685.
    7. Blake, M. M.; Nanayakkara, S. U.; Claridge, S. A.; Fernández-Torres, L. C.; Sykes, E. C. H.; Weiss, P. S. Identifying Reactive Intermediates in the Ullmann Coupling Reaction by Scanning Tunneling Microscopy and Spectroscopy. J. Phys. Chem. C 2009, 113, 13167–13172.
    8. Venier, M.; Ma, Y.; Hites, R. A. Bromobenzene Flame Retardants in the Great Lakes Atmosphere. Environ. Sci. Technol. 2012, 46, 8653–8660.
    9. McQueen, C. A. Comprehensive Toxicology. Elsevier Science: London, 2017.
    10. Ullmann, F.; Bielecki, J. Ueber Synthesen in der Biphenylreihe. Chem. Ber. 1901. 34, 2174–2185.
    11. Ullmann, F.; Sponagel, P. Ueber die Phenylirung von Phenolen. Chem. Ber. 1905. 38, 2211–2212
    12. Goldberg, I. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Chem. Ber. 1906. 39, 1691–1692.
    13. Allen, C. F. H. and McKee, G. H. W. Acridone. Org. Synth. 1939. 14, 66.
    14. Kwiecień, A.; Sroka, A.; Majerz, I. Electrochemical Behaviour of Selected Fenamate NSAIDs at PNAANI Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2021. 168, 106504.
    15. Xi, M.; Bent, B. E. Iodobenzene on Cu (111): Formation and Coupling of Adsorbed Phenyl Groups. Surf. Sci. 1992. 278, 19–32.
    16. Syomin, D.; Koel, B. E. Adsorption of Iodobenzene (C6H5I) on Au (111) Surfaces and Production of Biphenyl (C6H5–C6H5). Surf. Sci. 2001. 490, 265–273.
    17. Lewis, E. A.; Marcinkowski, M. D.; Murphy, C. J.; Liriano, M. L.; Therrien, A. J.; Pronschinske, A.; Sykes, E. C. H. Controlling Selectivity in the Ullmann Reaction on Cu (111). Chem. Commun. 2017. 53, 7816–7819.
    18. Lee, A. F.; Chang, Z.; Hackett, S. F.; Newman, A. D.; Wilson, K. Hydrodebromination of Bromobenzene Over Pt (111). J. Phys. Chem. C 2007. 111, 10455–10460.
    19. Maharana, T.; Negi, Y. S.; Mohanty, B. Review Article: Recycling of Polystyrene. Polym. Plast. Technol. Eng. 2007. 46, 729–736.
    20. Ramli Sulong, N. H.; Mustapa, S. A. S.; Abdul Rashid, M. K. Application of Expanded Polystyrene (EPS) in Buildings and Constructions: A Review. J. Appl. Polym. Sci. 2019. 136, 47529.
    21. Wei, W.; Huang, W. X.; White, J. M. Adsorption of Styrene on Ag(111). Surf. Sci. 2004. 572, 401–408.
    22. Kim, D. H.; Hwang, Y. J.; Ryou, J.; Kim, S.; Hong, S. Atomic and Electronic Structure of Styrene on Ge (100). Surf. Sci. 2011. 605, 1438–1444.
    23. Cowell, J. J.; Santra, A. K.; Lindsay, R.; Lambert, R. M.; Baraldi, A.; Goldoni, A. Bonding and Reactivity of Styrene on Cu (110): Heterogeneous Alkene Epoxidation without the Use of Silver. Surf. Sci. 1999. 437, 1–8.
    24. Santra, A. K.; Cowell, J. J.; Lambert, R. M. Ultra‐Selective Epoxidation of Styrene on Pure Cu {111} and the Effects of Cs Promotion. Catal. lett. 2000. 67, 87–91.
    25. Zhou, L.; Madix, R. J. Strong Structure Sensitivity in the Partial Oxidation of Styrene on Silver Single Crystals. Surf. Sci. 2009. 603, 1751–1755.
    26. Pang, X. Y.; Xing, B.; Xue, L. Q.; Wang, G. C. Selective Oxidation of Styrene on an Oxygen‐Adsorbed Cu (111): A Comparison with Au (111). J. Comput. Chem. 2009. 31, 1618–1624.
    27. Xue, L. Q.; Pang, X. Y.; Wang, G. C. Selective Oxidation of Styrene on an Oxygen‐Adsorbed Au (111): A Density Functional Theory Study. J. Comput. Chem. 2008. 30, 438–446.
    28. Zheng, G.; Stöver, H. D. Grafting of Polystyrene from Narrow Disperse Polymer Particles by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2002. 35, 6828–6834.
    29. Wiacek, M.; Wesolek, D.; Rojewski, S.; Bujnowicz, K.; Schab‐Balcerzak, E. Halogeno‐Modified Polystyrene: Monomer Reactivity Ratios, Thermal Behaviour and Flammability. Polym. Int. 2014. 63, 1982–1990.
    30. Zhang, Y. P.; He, J. H.; Xu, G. Q.; Tok, E. S. Selective Attachment of 4-Bromostyrene on the Si (111)-(7×7) Surface. J. Phys. Chem. C 2011. 115, 15496–15501.
    31. Basu, R.; Lin, J. C.; Kim, C. Y.; Schmitz, M. J.; Yoder, N. L.; Kellar, J. A.; Bedzyk, M. J.; Hersam, M. C. Structural Characterization of 4-Bromostyrene Self-Assembled Monolayers on Si (111). Langmuir 2007. 23, 1905–1911.
    32. Zhang, Y. P.; He, J. H.; Xu, G. Q.; Tok, E. S. Architecturing Covalently Bonded Organic Bilayers on the Si (111)-(7×7) Surface via in Situ Photoinduced Reaction. J. Phys. Chem. C 2012. 116, 8943–8949.
    33. Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Bocharova, V.; Simon, F.; Nitschke, M.; Stamm, M.; Grötzschel, R.; Kiriy, A. Grafting of Poly (3-hexylthiophene) from Poly (4-bromostyrene) Films by Kumada Catalyst-Transfer Polycondensation: Revealing of the Composite Films Structure. Macromolecules 2008. 41, 7383–7389.
    34. Luna, R.; Millán, C.; Domingo, M.; Santonja, C.; Satorre, M. Á. Experimental Study of the Frequency Factor in the Polanyi–Wigner Equation: The case of C2H6. Vacuum 2015. 122, 154–160.
    35. Oura, K.; Lifshits, V. G.; Saranin, A., Zotov, A. V.; Katayama, M. Surface Analysis – An Introduction. Springer-Verlag: Berlin, 2009.
    36. Vickerman, J. C.; Gilmore, I. S. Surface Analysis – The Principal Techniques. John Wiley & Sons Ltd: Chichester, 2009.
    37. Mather, R. R. Surface Modification of Textiles. Sawston: Woodhead, 2009.
    38. Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers. Chichester, John Wiley & Sons, Ltd: UK, 1992.
    39. Hsu, C. N. Experimental and Performance Analyses of a Turbomolecular Pump Rotor System. Vacuum 2015. 121, 260–273.
    40. Schulz, L. Sputter-ion Pumps. Cern: Meyrin, 1999.
    41. Sexton, B. A. Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu (100). Surf. Sci. 1979. 88, 299–318.
    42. Chorkendorff, I.; Rasmussen, P. B. Reconstruction of Cu (100) by Adsorption of Atomic Hydrogen. Surf. Sci. 1991. 248, 35–44.
    43. 江育賢。1-溴-4-乙炔苯在銅(100)和氧/銅(100)表面上的熱反應研究。國立成功大學化學所碩士論文。2015.
    44. Nakakura, C. Y.; Altman, E. I. Bromine Adsorption, Reaction, and Etching of Cu (100). Surf. Sci. 1997. 370, 32–46.
    45. Lin, J. L.; Lin, Y. S.; Lin, B. C.; Liao, Y. H.; Chen, Y. T.; Chen, S. W.; Jhuang, J. Y.; Lee, Y.; Lin, J. C. Adsorption Structure, Thermal Reaction and Initial Pathways of 1,2-Benzyne on Cu (100). Surf. Sci. 2016. 652, 76–81.
    46. Chen, S. W.; Chao, P. Y.; Chen, G. J.; Chan, S. H.; Chang, L. C.; Lee, S. S.; Lin, J. L. Adsorption and Reactions of 3-Bromopyridine and 2-Bromopyridine on Cu (100) and O/Cu (100). J. Phys. Chem. C 2020. 124, 6078–6089.
    47. Lin, J. L.; Lin, H. P.; Yang, C. M.; Chen, T. Y.; Lee, S. H.; Chiang, C. M. Reactions of CH2=CHBr and CH3CHBr2 on Cu (100) and O/Cu (100). J. Phys. Chem. C 2017. 121, 17990–17998.

    無法下載圖示 校內:2027-09-07公開
    校外:2027-09-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE