簡易檢索 / 詳目顯示

研究生: 王易凱
Wang, Yi-Kai
論文名稱: 模糊二階可靠度應用於船體縱向結構之強度分析
The Fuzzy Reliability Analysis of a Ship’s Longitudinal Structure Based on the Second-Order Reliability Method
指導教授: 楊澤民
Yang, Joe-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 隸屬函數二階可靠度模糊可靠度模糊理論
外文關鍵詞: Membership Function, Fuzzy Reliability, SORM, Fuzzy Theory
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 船舶及海洋結構物的疲勞是一個受到大量隨機變數與不確定因子所影響的問題,在設計過程中相關的參數量需考慮其模糊性的存在,假如都是以一些確定的數值來設計,則可能會造成不經濟或不安全之顧慮,亦即結構強度的判斷準則與外力負荷是具有模糊性的。故本研究之主要目的是引用模糊集合觀念於二階可靠度中。採用經驗二階可靠度方法結合模糊理論來進行船舶結構可靠度分析時,對於船殼極限狀態函數中之各個隨機變數以及不確定因子,本文取三角形隸屬函數來將其隸屬程度予以量化,並以截集的方法來控制其容差大小,進而求得各種破壞模式不同 -截集下之破壞機率的置信區間。
    本研究針對兩艘實船,175700噸之雙殼散裝貨輪與26萬噸之單殼油輪,分別進行模糊一階可靠度和模糊二階可靠度分析。目的是希望藉由模糊集合觀念,提供船體結構設計者更多的設計參考資訊與更寬廣的設計空間。

    Basically, the failure problem of marine structures is affected by several factors, which are random in natural. If deterministic values alone are used as design parameters to describe those random factors while ignoring fuzzy characteristics in design, this may cause some economical or safe concerns for marine structures. In another word, the fuzziness lies in both strengths and loads. The purpose of this study is to employ the fuzzy set concept into the SORM. While utilizing an empirical SORM combined with the fuzzy theory to analyze a ship structure, a triangular membership function is applied to get intervals.
    Two boats, a double-hull bulk carrier and an oil tanker are select as examples to analyze the fuzzy reliabilities based on both FORM and SORM. It is believed that this algorithm may provide more design information for ship structure designer.

    摘要…………………………………………………………………………… Ⅰ 英文摘要……………………………………………………………………… Ⅱ 誌謝…………………………………………………………………………… Ⅲ 目錄…………………………………………………………………………… Ⅳ 表目錄………………………………………………………………………… Ⅷ 圖目錄………………………………………………………………………… Ⅸ 符號說明……………………………………………………………………… Ⅹ 第一章 緒論…………………………………………………………………… 1 1.1 前言……………………………………………………………………… 1 1.2 文獻回顧………………………………………………………………… 2 1.3 本文架構………………………………………………………………… 4 第二章 船體結構強度之研究……………………………………………… 5 2.1 前言……………………………………………………………………… 5 2.2 波浪負荷………………………………………………………………… 7 2.2.1 靜水彎矩……………………………………………………………… 7 2.2.2 波浪彎矩……………………………………………………………… 8 2.3 船體之極限強度………………………………………………………… 10 2.3.1 極限強度之分析……………………………………………………… 11 2.3.2 剖面模數……………………………………………………………… 15 2.4整體破壞模式…………………………………………………………… 16 2.4.1 全塑性破壞………………………………………………………… 16 2.4.2 初始降伏…………………………………………………………… 18 2.4.3船殼格架失穩破壞…………………………………………………… 19 2.5挫曲破壞模式…………………………………………………………… 20 2.5.1 介於加強材間板之挫曲破壞………………………………………… 21 2.5.2 加強材之彎曲挫曲破壞……………………………………………… 23 2.5.3 加強材之彎曲/扭曲挫曲…………………………………………… 24 2.5.4 全格架之挫曲破壞…………………………………………………… 26 第三章 模糊理論…………………………………………………………… 29 3.1 前言…………………………………………………………………… 29 3.2 Fuzzy 集合…………………………………………………………… 30 3.3 隸屬函數…………………………………………………………………33 3.4 α-cut、分解定理與模糊數…………………………………………… 35 3.4.1 α-cut………………………………………………………………… 35 3.4.2 分解原理……………………………………………………………… 36 3.4.3 模糊數………………………………………………………………… 37 第四章 可靠度理論與應用………………………………………………… 39 4.1 前言……………………………………………………………………… 39 4.2 不確定因子之量化……………………………………………………… 39 4.2.1 不確定因子…………………………………………………………… 39 4.2.2 不確定因子的類型…………………………………………………… 40 4.3 結構可靠度……………………………………………………………… 42 4.4 安全餘裕與極限狀態函數……………………………………………… 45 4.5 基本隨機變量之轉換…………………………………………………… 47 4.5.1 常態分佈……………………………………………………………… 47 4.5.2 對數常態分佈………………………………………………………… 49 4.5.3 等效常態分佈………………………………………………………… 50 4.6 一階可靠度指標………………………………………………………… 51 4.7 二階可靠度理論( SORM )……………………………………………… 56 4.7.1 回顧二階可靠度方法(SORM)………………………………………… 56 4.7.2 二階可靠度簡單近似法……………………………………………… 57 4.7.3 經驗二階可靠度指標………………………………………………… 59 第五章 模糊可靠度理論…………………………………………………… 63 5.1 前言……………………………………………………………………… 63 5.2 隸屬函數及截集原理之應用…………………………………………… 63 5.3 模糊一階可靠度………………………………………………………… 67 5.4 模糊二階可靠度………………………………………………………… 70 第六章 實例計算之結果與分析…………………………………………… 74 6.1 前言……………………………………………………………………… 74 6.2 實船分析結果……………………………………………………………74 6.2.1 26萬噸油輪之實船分析結果…………………………………………74 6.2.2 17萬5千噸雙殼散裝貨輪之實船分析結果………………………… 85 6.2.3 實船之結果比較……………………………………………………… 95 第七章 結論……………………………………………………………………99 參考文獻………………………………………………………………………102 附錄A 波浪彎矩之計算…………………………………………………… 105 附錄B 加強格板極限壓縮強度的計算…………………………………… 113

    【1】Mansour, A. E., “Methods of Computing the Probability of Failure Under Extreme Values of Bending Moment,” J. Ship Research, Vol. 16, No. 2, pp. 113-123, June, 1972.
    【2】Hasofer, A. M., and Lind, N. C., “Exact and Invariant Second-moment Code Format,” Journal of Engineering Mechanics, ASCE, Vol. 100, No. EMI, pp. 111-121, Feb., 1974.
    【3】Mansour, A. E. , Jan, H. Y. , Zigelman, C. I. , Chen, Y. N. , Harding, S.J., “ Implementation of Reliability Methods to Marine Structures,” SNAME Transactions , Vol. 92, pp. 353-392, 1984.
    【4】Mansour, A. E., and Hovem L., “Probability Based Ship Structural Safety Analysis,” Journal of Ship Research, Vol. 38, No. 4, pp. 329-339, Dec., 1994.
    【5】Chao, R. J., and Ayyub, B. M., “Reliability and Uncertainty Evaluation for Longitudinal Bending of Hull Girders of Surface Ships,” Journal of Ship Research, Vol. 41, No. 1, pp. 57-68, March, 1997.
    【6】Sawyer, J.P., Rao, S.S., “Fault Tree Analysis of Fuzzy Mechanical System,” Microelectronics and Reliability, Vol. 34, No. 4, pp. 653-667, Apr. 1994.
    【7】Fiessler. B., Neumann, H. –J, and Rackwitz, R., “quadratic limit state in structural reliability,” J. Engrg. Mech., ASCE, 105(4), 661-676, 1979
    【8】Breitung, K., “Asymptotic approximation for multi-normal integer,” J. Engrg. Mech., ASCE, 110(3), pp. 357-366, 1984.
    【9】Tvedt, L., “Two second-order approximations to the failure probability,” Veritias Rep. RDIV/20-004083, Det norske Veritas, Oslo, 1983
    【10】Tvedt, L., “Second-order reliability by an exact integral,” Proc., 2nd IFIP Working Conf. on reliability and Optimization on Struct. Sys., P. Thoft-Christensen, ed., Springer, New York, pp.377-384,1988
    【11】Tvedt, L., “Distribution of quadratic forms in normal space application to structural reliability,” J. Engrg. Mech., ASCE, 116(6),pp. 1183-1197, 1990
    【12】Der Kiureghian, A., Lin, H. Z., and Hwang, S. J., “Second-order reliability approximations,” J. Engrg. Mech., ASCE, 113(8), pp.1208-1225, 1987
    【13】Der Kiureghian, A., and De Stefano, M., “Efficient algorithm for second-order reliability analysis,” J. Engrg. Mech., ASCE,117(12), pp.2904-2923, 1991

    【14】Der Kiureghian, A., and Dakessian, T.,“Multiple design points in first and second-order reliability,” Structural Safety, Vol. 20, pp. 37-49, 1998.

    【15】Hohenbichler, M., and Rackwitz, R., “Improvement of second-order reliability estimates by importance sampling,” J. Engrg. Mech., ASCE, 114(12), pp.2195-2199,1988
    【16】Zhao, T. G., and Ono, T., “New approximation for SORM: Part 1, ”. Engrg. Mech., ASCE, 125(1),pp.79-85,1999
    【17】Zhao, T. G., and Ono, T., “New approximation for SORM: Part 2, ”. Engrg. Mech., ASCE, 125(1),pp.86-93,1999
    【18】Loukakis, T. A., and Chryssostomos Chryssostomidis, “Seakeeping Standard Series for Cruiser-stern ships,” Trans. SNAME, Vol. 83, pp67-127, 1975.
    【19】Mansour, A. E., “An Introduction to Structural Reliability Theory,” Ship Structure Committee Report, SSC-351,Dec., 1986.
    【20】Mansour, A. E., “Extreme Value Distributions of Wave Loads and Their Application to Marine Structures,” Proceedings, Marine Structural Reliability Symposium, Arlington, Va., Oct., 1987.
    【21】Nitta, A., Arai, H. and Magaino, A., “Basic of IACS unified longitudinal strength standard,” Marine structures, Vol. 5, pp. 1-21,1992
    【22】Paik, J. K., Thayamballi, A. K., and Yang S. H., ” Residual Strength Assessment of Ship After Collision and Grounding,” Maine Technology,Vol.35,No.1, pp 38-54, Jan.1998.
    【23】Caldewll, J. B., “Ulitimate Longitudinal Strength,” Transactions, Royal Institution of Naval Architects, Vol. 107, 1965.
    【24】Paik, J. K., Kim, S. K., Yang, S. H. and Thayamballi, A. K., ”Ultimate Strength Reliability of Corroded Ship Hulls,” The Royal Institution of Naval Architects, pp. 1-18, 1997.
    【25】Mansour, A. E., Yang, J. M. and Thayamballi, A., “An Experimental Investigation of Ship Hull Ultimate Strength,” Transactions SNAME, pp. 411-439, 1990.
    【26】Timoshenko, S. P. and James M. G., ”Theory of Elastic Stability,” McGraw-Hill Press, Second Edition.
    【27】Zadeh, L. A., Fuzzy Sets, Information and Control, 8 , pp.338-353, 1965
    【28】Zimmermann, H. J., “Fuzzy Set Theory and Its Applications,”2 nd Revised Edition, Kluwer Academic Publishers, London, 1991.
    【29】Kaufmann, A., Introduction to the Theory of Fuzzy Subsets,Vol. 1, Academic Press, New York, 1975
    【30】Rahman, M. K., “Applied Probability and Stochastic Process,” In Engineering and Physical Sciences, University of Florida.
    【31】Rackwitz, R. and Fiessler, B., “Structural Reliability under Combined Random Load Sequence,” Computers and Structures, Vol. 9, 1978.
    【32】洪振發, 李昱君, “多破壞模式之結構系統可靠度,” 國立台灣大學造船及海洋工程學研究所, NTU-NAOE-Tech.Report 464, June, 1994
    【33】王欽輝,侯志陞, “Fuzzy工學”, 全華科技圖書公司, 1992.
    【34】黃俊堯, “船體縱向結構之模糊可靠度分析, ” 國立成功大學造船及船舶機械工程研究所, 碩士論文, 中華民國87年6月
    【35】陳俊達, “船舶結構受創後之剩餘強度與可靠度分析, ” 國立成功大學造船及船舶機械工程研究所, 碩士論文, 中華民國89年6月
    【36】楊田園, “利用二階可靠度方法進行船體縱向結構可靠度分析, ” 國立成功大學造船及船舶機械工程研究所, 碩士論文, 中華民國91年7月
    【37】葉政錫, “二階可靠度逼近法於船舶結構可靠度之研究, ” 國立成功大學造船及船舶機械工程研究所, 碩士論文, 中華民國92年6月

    下載圖示 校內:2006-02-15公開
    校外:2008-02-15公開
    QR CODE