簡易檢索 / 詳目顯示

研究生: 郭鈞勝
Guo, Jyun-Sheng
論文名稱: 探討石墨烯電漿共振化光敏現象對光化學分解水效率影響之研究
Effect of graphene plasmonic photosensitizer on the efficiency of photochemical water splitting
指導教授: 丁志明
Ting, Jyh-Ming
共同指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 62
中文關鍵詞: 石墨烯二氧化鈦表面電漿共振效應光電化學分解水產氫
外文關鍵詞: Graphene, Titanium dioxide, surface plasmon resonance, Photoelectrochemical Water Splitting
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來石墨烯被發現表面電漿共振化後有非常特異的現象,此現象能有助於提升太陽能電池中的光電流,這是因為此效應具有非常優異的載子移動率、高光吸收率、可調變的共振波長、較長的電子存活時間(long lifetime)、於介面處載子傳輸快速;在染料敏化太陽能電池中,染料是提升光吸收波段的角色,但染料本身在使用上有許多環境上的限制與高成本的問題,根據上述染料敏化太陽能電池的缺點,擁有能自由調整能隙、優異的電子遷移率、高穩定化學性質的石墨烯似乎是種有潛力的材料能取代染料進而提升整體光電轉化效率。根據上述的現象,我們能利用石墨烯電漿化後的性質轉換太陽光能量,本研究中我們將利用奈米金屬粒子電漿共振化後調整石墨烯的能帶結構,使得石墨烯成為一種光敏化的材料,接著我們再利用此特性與不同二氧化鈦材料合成光電極並組合成一個完整的迴路進行光分解水產氫效率的研究

    Recently, surface plasmon resonance was discovered on the graphene. Surface plasmon resonance is utilized to generate photoelectric current in plasmonic solar cell due to excellent mobility of charge carriers, high absorption cross-sections (105larger than dye), tunable resonance, long life time, and rapid transfer of charges at a three-phase boundary. In dye-sensitized solar cell case, the dye plays a role to increase the available absorption range of light, however, the disadvantage of dye including its limit of operating condition, easier to decomposition and high cost. Basing above shortcomings, the modified graphene is a predominant candidate to replace dye with its tunable band gap, good electronic mobility, and stable chemical property. With these different band structures of graphene, we can apply them on solar cell to improve their efficiency by replacing the dye material. According the above phenomena, it demonstrates graphene plasmonics also has this effect and potential to apply in energy conversion of solar energy in the future. Here we modified graphene to produce surface plasmon. We can use self-assembly monolayer process to let the nano-sized metal particle bonding on the graphene’s surface that can help us to adjust the band structure of graphene to produce surface plasmon resonance. Then metal cluster modified graphene act as a photosensitizer. Furthermore, plasmonic graphene was fabricated on n type semiconductor to generate photoelectric current in water splitting solar hydrogen production.

    摘要 I Abstract II Extended Abstract III 誌謝 XVII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究背景 2 1-3研究動機 8 第二章 理論原理與文獻回顧 12 2-1 光電化學電池 12 2-1.1 工作電極 (WORKING ELECTRODE,WE) 13 2-1.2 對電極 (COUNTER ELECTRODE,CE) 14 2-1.3 參考電極 14 2-2 光電化學電解水產氫反應與原理 14 2-3 半導體光電極特性介紹 19 2-3.1各類半導體元件運作原理介紹 20 第三章 實驗方法及分析儀器原理 23 3-1 實驗藥品與材料 23 3-2 實驗儀器設備 24 3-3 實驗流程與分析方法 25 3-4實驗步驟 25 3-4-1 介孔洞二氧化鈦製備 25 3-5光電極特性分析 27 3-5-1 粉末與薄膜型態與微結構分析 27 3-5-2 化學鍵結分析 28 3-5-3 UV-VIS 光學分析 29 3-5-4單波長光電轉換效率分析 31 第四章 結果與討論 33 4-1 自製球珠材料之結構 33 4-2 化學鍵結分析 37 4-3 自製光電極材料光學特性 42 4-4 自製光電極材料光電轉換效率量測 47 4-5 自製光電極材料產氫效率評估 55 第五章 結論 59 第六章 參考文獻 60

    [1] M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Chem Soc Rev, 42 (2013) 2986-3017.
    [2] A.K. Ray, A.A.C.M. Beenackers, AIChE Journal, 44 (1998) 477-483.
    [3] F. Akira, H. Kenichi, Nature, 238 (1972) 37-38.
    [4] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chemical Reviews, 110 (2010) 6446-6473.
    [5] A.J. Bard, Journal of Photochemistry, 10 (1979) 59-75.
    [6] A. Kudo, Y. Miseki, Chemical Society Reviews, 38 (2009) 253-278.
    [7] X. Chen, S. Shen, L. Guo, S.S. Mao, Chemical Reviews, 110 (2010) 6503-6570.
    [8] K. Maeda, K. Domen, The Journal of Physical Chemistry Letters, 1 (2010) 2655-2661.
    [9] M.A. Fox, M.T. Dulay, Chemical Reviews, 93 (1993) 341-357.
    [10] A. Fujishima, X. Zhang, D.A. Tryk, International Journal of Hydrogen Energy, 32 (2007) 2664-2672.
    [11] P.V. Kamat, The Journal of Physical Chemistry C, 111 (2007) 2834-2860.
    [12] A.J. Esswein, D.G. Nocera, Chemical Reviews, 107 (2007) 4022-4047.
    [13] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Advanced Materials, 24 (2012) 229-251.
    [14] X. Chen, S.S. Mao, Chemical Reviews, 107 (2007) 2891-2959.
    [15] A.L. Linsebigler, G. Lu, J.T. Yates, Chemical Reviews, 95 (1995) 735-758.
    [16] F.E. Osterloh, Chemistry of Materials, 20 (2007) 35-54.
    [17] C.-J. Li, G.-R. Xu, B. Zhang, J.R. Gong, Applied Catalysis B: Environmental, 115–116 (2012) 201-208.
    [18] C.-J. Li, J.-N. Wang, B. Wang, J.R. Gong, Z. Lin, Materials Research Bulletin, 47 (2012) 333-337.
    [19] C.-J. Li, J.-N. Wang, B. Wang, J.R. Gong, Z. Lin, Journal of Nanoscience and Nanotechnology, 12 (2012) 2496-2502.
    [20] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Advanced Materials, 25 (2013) 3820-3839.
    [21] A. Kudo, H. Kato, I. Tsuji, Chemistry Letters, 33 (2004) 1534-1539.
    [22] R. Abe, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11 (2010) 179-209.
    [23] G. Michael, Nature, 414 (2001) 338-344.
    [24] J.S. Jang, H.G. Kim, J.S. Lee, Catalysis Today, 185 (2012) 270-277.
    [25] A. Kubacka, M. Fernandez-Garcia, G. Colon, Chemical Reviews, 112 (2011) 1555-1614.
    [26] P.D. Tran, L.H. Wong, J. Barber, J.S.C. Loo, Energy & Environmental Science, 5 (2012) 5902-5918.
    [27] E. Borgarello, J. Kiwi, M. Graetzel, E. Pelizzetti, M. Visca, Journal of the American Chemical Society, 104 (1982) 2996-3002.
    [28] K. Maeda, K. Domen, The Journal of Physical Chemistry C, 111 (2007) 7851-7861.
    [29] A.J. Bard, L.R. Faulkner, (2001).
    [30] N. Papasimakis, Z. Luo, Z.X. Shen, F. De Angelis, E. Di Fabrizio, A.E. Nikolaenko, N.I. Zheludev, Opt. Express, 18 (2010) 8353-8359.
    [31] J. Li, C.-y. Liu, European Journal of Inorganic Chemistry, 2010 (2010) 1244-1248.
    [32] H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Journal of Applied Physics, 75 (1994) 2042-2047.
    [33] A. Von Hippel, J. Kalnajs, W.B. Westphal, Journal of Physics and Chemistry of Solids, 23 (1962) 779-799.
    [34] Y. Kim, C.-H. Yoon, K.-J. Kim, Y. Lee, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25 (2007) 1219-1225.
    [35] J. Pouilleau, D. Devilliers, H. Groult, P. Marcus, Journal of Materials Science, 32 (1997) 5645-5651.
    [36] H. Jensen, A. Soloviev, Z. Li, E.G. Søgaard, Applied Surface Science, 246 (2005) 239-249.
    [37] J. Yu, X. Zhao, J. Du, W. Chen, Journal of Sol-Gel Science and Technology, 17 (2000) 163-171.
    [38] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, R.S. Ruoff, Carbon, 47 (2009) 145-152.
    [39] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chemical Society Reviews, 39 (2010) 228-240.
    [40] S. Linic, P. Christopher, D.B. Ingram, Nature materials, 10 (2011) 911-921.
    [41] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Journal of the American Chemical Society, 133 (2011) 10878-10884.
    [42] Q. Xiang, J. Yu, M. Jaroniec, The Journal of Physical Chemistry C, 115 (2011) 7355-7363.
    [43] S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science, 297 (2002) 2243-2245.

    下載圖示 校內:2019-08-13公開
    校外:2019-08-13公開
    QR CODE