簡易檢索 / 詳目顯示

研究生: 林哲民
Lin, Jhe-Min
論文名稱: 摻雜之氧化鎢薄膜的成長及其氣體感測性質之研究
Growth and gas sensing properties of doped tungsten oxide films
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 射頻磁控濺鍍氧化鎢WO3薄膜氣體感測
外文關鍵詞: RF magnetron sputter, WO3, tungsten oxide, thin film, gas sensor
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究純氧化鎢薄膜及摻雜之氧化鎢薄膜的結構、成分及價態,以及針對其應用在氣體感測器之探討。首先,針對不同退火溫度退火持溫之純氧化鎢薄膜作比較,再進而討論鐵、矽及碳不同含量的摻雜對氧化鎢薄膜的結構及氣體感測性質之影響。本研究以射頻磁控濺鍍法,在室溫下直接沉積金屬鎢薄膜於基板上,再於大氣中退火持溫成長為氧化鎢薄膜,並藉由XRD、SEM、EDS及XPS等各項物性及化性分析儀器觀察所製備之氧化鎢薄膜,並利用本實驗室自組裝之氣體感測裝置,針對CO、CO2、甲醇及乙醇四種目標氣體作氣體感測分析。
    實驗結果為550˚C退火持溫之純氧化鎢薄膜在工作溫度350˚C下對四種目標氣體進行氣體感測有最高敏感度,且藉由SEM觀察表面形貌發現,相較其他較高退火溫度而言,其表面團簇物或晶粒大小較小;就摻雜之氧化鎢薄膜而言,一定含量的矽摻雜及碳摻雜之氧化鎢薄膜,對四種氣體進行氣體感測,其結果顯示,矽及碳摻雜有抑制CO及CO2敏感度,提高甲醇及乙醇敏感度之效果,且藉由SEM觀察碳摻雜之氧化鎢表面形貌發現,碳的摻雜使氧化鎢形成類似微球的結構;然而鐵的摻雜則是抑制了四種氣體的敏感度,從SEM觀察表面形貌則是發現,鐵的摻雜使氧化鎢從顆粒狀轉變成為條狀。

    This thesis is concerned with the thin film growth and characterization of Fe, Si and C doped tungsten oxide (WO3-x) for gas sensing applications. The films were grown by RF magnetron sputter deposition in pure Ar atmosphere at room temperature, followed by post-deposition annealing in air at 550 ~ 750 C. The composition and microstructure of the grown films, as well as the valence state of tungsten ions, were studied by XRD, SEM, EDS and XPS. The electric resistances of the films in pure air (Ra) and in the air containing 5 ppm each of the gases of CO, CO2, methanol and ethanol (Rg) were tested, according to which the gas sensitivity (S) was defined as, S=Ra/Rg. The effects of film composition, microstructure and dopant on the gas sensitivity and the response and recovery times were discussed. The results showed that at the working of 350 C, the 35.0 % C doped WO3-x films had the best sensitivity for alcohols, i.e. S=5.89 and 5.42 for ethanol and methanol, respectively, compared to S=1.71 and 1.19 for CO and CO2, respectively. The response/recovery times of the 35.0 % C doped WO3-x films were 7/244 s and 8/463 s for ethanol and methanol, respectively.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 x 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 6 2-1 濺鍍原理 6 2-1-1 射頻濺鍍 8 2-1-2 磁控濺鍍 8 2-1-3 反應性濺鍍 9 2-2 薄膜沉積原理 11 2-2-1 薄膜成長模式 13 2-2-2 薄膜微觀結構 14 2-3 氣體感測器簡介 16 2-3-1 過渡金屬氧化物半導體型 17 2-3-2 氣體傳感器的性能 17 2-4 氣體感測器工作原理 21 2-4-1 蕭特基介面 21 2-4-2 氣體吸附機制 21 2-5 晶粒尺寸效應 26 2-6 氧化鎢 28 2-6-1 氧化鎢結構簡介 28 2-6-2 氧化鎢製程及應用簡介 30 第三章 實驗方法與步驟 31 3-1 實驗流程 31 3-2 實驗材料 32 3-3 靶材製備 34 3-3-1 固相合成法 34 3-3-2 金屬鎢、氧化鐵及矽靶材製備 34 3-4 薄膜製備 38 3-4-1 濺鍍系統 38 3-4-2 基板前處理 40 3-4-3 濺鍍步驟及參數 41 3-4-4 退火處理 42 3-5 薄膜性質分析 44 3-5-1 晶體結構分析:XRD 44 3-5-2 表面形貌與成分分析:SEM & EDS 45 3-5-3 成分及化學鍵結分析:XPS 47 3-6 氣體感測性質分析 49 3-6-1 氣體感測系統 49 3-6-2 氣體感測試片製備 50 3-6-3 氣體感測流程 51 第四章 結果與討論 52 4-1 未摻雜之氧化鎢樣品分析 52 4-1-1 晶體結構分析 52 4-1-2 表面形貌分析 55 4-1-2-1 巨觀形貌 55 4-1-2-2 微觀形貌 55 4-1-3 成分及化學鍵結分析 58 4-1-4 氣體感測分析 61 4-1-4-1 選定最佳退火溫度 61 4-1-4-2 選定最佳工作溫度 68 4-1-5 純氧化鎢薄膜延伸數據 76 4-2 摻雜之氧化鎢樣品分析 78 4-2-1 晶體結構分析 79 4-2-2 表面形貌分析 84 4-2-3 成分分析 103 4-2-4 氣體感測分析 105 4-2-4-1 Fe摻雜之氧化鎢薄膜 105 4-2-4-2 Si摻雜之氧化鎢薄膜 112 4-2-4-3 C摻雜之氧化鎢薄膜 116 第五章 結論 120 參考文獻 122

    [1] K. Persaud and G. Dodd, "Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose," Nature, vol. 299, no. 5881, pp. 352-355, 1982.
    [2] A. Gurlo, "Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies," Nanoscale, vol. 3, no. 1, pp. 154-65, Jan 2011, doi: 10.1039/c0nr00560f.
    [3] C.-H. Lin, W.-C. Chang, and X. Qi, "Growth and Characterization of Pure and Doped SnO2 Films for H2 Gas Detection," Procedia Engineering, vol. 36, pp. 476-481, 2012, doi: 10.1016/j.proeng.2012.03.069.
    [4] B. Karunagaran, P. Uthirakumar, S. Chung, S. Velumani, and E.-K. Suh, "TiO2 thin film gas sensor for monitoring ammonia," Materials Characterization, vol. 58, no. 8-9, pp. 680-684, 2007.
    [5] Q. Wan, Q. Li, Y. Chen, T.-H. Wang, X. He, J. Li, and C. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, vol. 84, no. 18, pp. 3654-3656, 2004.
    [6] S. Park, S. Kim, G.-J. Sun, and C. Lee, "Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles," ACS Applied Materials & Interfaces, vol. 7, no. 15, pp. 8138-8146, 2015.
    [7] C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, and Y. Wang, "A review on WO3 based gas sensors: Morphology control and enhanced sensing properties," Journal of Alloys and Compounds, p. 153194, 2019.
    [8] H. Long, W. Zeng, and H. Zhang, "Synthesis of WO3 and its gas sensing: a review," Journal of Materials Science: Materials in Electronics, vol. 26, no. 7, pp. 4698-4707, 2015, doi: 10.1007/s10854-015-2896-4.
    [9] C. V. Ramana, S. Utsunomiya, R. C. Ewing, C. M. Julien, and U. Becker, "Structural stability and phase transitions in WO3 thin films," (in English), J. Phys. Chem. B, Article vol. 110, no. 21, pp. 10430-10435, Jun 2006, doi: 10.1021/jp056664i.
    [10] P. Gao, H. Ji, Y. Zhou, and X. Li, "Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method," Thin Solid Films, vol. 520, no. 7, pp. 3100-3106, 2012, doi: 10.1016/j.tsf.2011.12.003.
    [11] Z. Jin, P. Hu, W. Xu, J. Zhou, W. Guo, Y. Chen, and C. Qiu, "Hydrothermal synthesis and gas sensing properties of hybrid WO3 nano-materials using octadecylamine," Journal of Alloys and Compounds, vol. 785, pp. 1047-1055, 2019.
    [12] S. Wei, L. Han, M. Wang, H. Zhang, W. Du, and M. Zhou, "Hollow cauliflower-like WO3 nanostructures: Hydrothermal synthesis and their CO sensing properties," Materials Letters, vol. 186, pp. 259-262, 2017.
    [13] S. Cao, C. Zhao, T. Han, and L. Peng, "Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers," Materials Letters, vol. 169, pp. 17-20, 2016.
    [14] T. Tesfamichael, M. Arita, T. Bostrom, and J. Bell, "Thin film deposition and characterization of pure and iron-doped electron-beam evaporated tungsten oxide for gas sensors," Thin Solid Films, vol. 518, no. 17, pp. 4791-4797, 2010, doi: 10.1016/j.tsf.2010.01.037.
    [15] M. El-Nahass, M. Saadeldin, H. Ali, and M. Zaghllol, "Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique," Materials Science in Semiconductor Processing, vol. 29, pp. 201-205, 2015.
    [16] J. Y. Shen, M. D. Wang, Y. F. Wang, J. Y. Hu, Y. Y. Zhu, Y. X. Zhang, Z. J. Li, and H. C. Yao, "Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor," Sensors and Actuators B-Chemical, vol. 256, pp. 27-37, Mar 2018, doi: 10.1016/j.snb.2017.10.073.
    [17] H. Ji, W. Zeng, and Y. Li, "Gas sensing mechanisms of metal oxide semiconductors: a focus review," Nanoscale, vol. 11, no. 47, pp. 22664-22684, 2019.
    [18] A. Dey, "Semiconductor metal oxide gas sensors: A review," Materials Science and Engineering: B, vol. 229, pp. 206-217, 2018/03/01/ 2018, doi: https://doi.org/10.1016/j.mseb.2017.12.036.
    [19] G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches," Sensors and Actuators B: Chemical, vol. 107, no. 1, pp. 209-232, 2005.
    [20] X. X. Zou, G. D. Li, P. P. Wang, J. Su, J. Zhao, L. J. Zhou, Y. N. Wang, and J. S. Chen, "A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties," Dalton Trans, vol. 41, no. 32, pp. 9773-80, Aug 28 2012, doi: 10.1039/c2dt30748k.
    [21] M. Epifani, E. Comini, R. Diaz, T. Andreu, A. Genc, J. Arbiol, P. Siciliano, G. Faglia, and J. R. Morante, "Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies," ACS Appl Mater Interfaces, vol. 6, no. 19, pp. 16808-16, Oct 8 2014, doi: 10.1021/am504158r.
    [22] X. Chi, C. Liu, L. Liu, Y. Li, Z. Wang, X. Bo, L. Liu, and C. Su, "Tungsten trioxide nanotubes with high sensitive and selective properties to acetone," Sensors and Actuators B: Chemical, vol. 194, pp. 33-37, 2014, doi: 10.1016/j.snb.2013.12.078.
    [23] C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, and W. Dong, "Preparation and gas sensing properties of partially broken WO3 nanotubes," Vacuum, vol. 114, pp. 13-16, 2015.
    [24] D. Meng, G. Wang, X. San, Y. Song, Y. Shen, Y. Zhang, K. Wang, and F. Meng, "Synthesis of WO3 flower-like hierarchical architectures and their sensing properties," Journal of Alloys and Compounds, vol. 649, pp. 731-738, 2015.
    [25] T. Liu, J. Liu, Q. Hao, Q. Liu, X. Jing, H. Zhang, G. Huang, and J. Wang, "Porous tungsten trioxide nanolamellae with uniform structures for high-performance ethanol sensing," CrystEngComm, vol. 18, no. 43, pp. 8411-8418, 2016.
    [26] S. Wei, G. Zhao, W. Du, and Q. Tian, "Synthesis and excellent acetone sensing properties of porous WO3 nanofibers," Vacuum, vol. 124, pp. 32-39, 2016.
    [27] S. Cao and H. Chen, "Nanorods assembled hierarchical urchin-like WO3 nanostructures: Hydrothermal synthesis, characterization, and their gas sensing properties," Journal of Alloys and Compounds, vol. 702, pp. 644-648, 2017.
    [28] H. Long, W. Zeng, and H. Zhang, "The solvothermal synthesis of the cobweb-like WO3 and its enhanced gas-sensing property," Materials Letters, vol. 188, pp. 334-337, 2017.
    [29] C. S. Prajapati and N. Bhat, "ppb level detection of NO 2 using a WO 3 thin film-based sensor: material optimization, device fabrication and packaging," RSC advances, vol. 8, no. 12, pp. 6590-6599, 2018.
    [30] 田民波, 薄膜技術與薄膜材料. 五南, 2007.
    [31] R. W. Berry, P. M. Hall, and M. T. Harris, Thin film technology (D. VAN NOSTRAND CO., INC., PRINCETON, N. J. 1968, 706 P). 1968.
    [32] M. Ohring, Materials science of thin films. Elsevier, 2001.
    [33] C. Lemire, D. B. B. Lollman, A. Al Mohammad, E. Gillet, and K. Aguir, "Reactive R.F. magnetron sputtering deposition of WO3 thin films," Sensors and Actuators B: Chemical, vol. 84, no. 1, pp. 43-48, 2002/04/30/ 2002, doi: https://doi.org/10.1016/S0925-4005(02)00009-6.
    [34] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, 1974, doi: 10.1116/1.1312732.
    [35] J. A. Thornton, High rate thick film growth (Annual review of materials science, no. 1). 1977, pp. 239-260.
    [36] J. A. Thornton, "The microstructure of sputter‐deposited coatings," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, no. 6, pp. 3059-3065, 1986, doi: 10.1116/1.573628.
    [37] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice?," Materials Science and Engineering: B, vol. 139, no. 1, pp. 1-23, 2007/04/25/ 2007, doi: https://doi.org/10.1016/j.mseb.2007.01.044.
    [38] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, "Interactions of tin oxide surface with O2, H2O AND H2," Surface Science, vol. 86, pp. 335-344, 1979/07/02/ 1979, doi: https://doi.org/10.1016/0039-6028(79)90411-4.
    [39] N. Yamazoe, Y. Kurokawa, and T. Seiyama, "Effects of additives on semiconductor gas sensors," Sensors and Actuators, vol. 4, pp. 283-289, 1983.
    [40] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films," Analytical Chemistry, vol. 34, no. 11, pp. 1502-1503, 1962.
    [41] J. Fu, C. Zhao, J. Zhang, Y. Peng, and E. Xie, "Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization," ACS applied materials & interfaces, vol. 5, no. 15, pp. 7410-7416, 2013.
    [42] L. Zhang, Z. Liu, L. Jin, B. Zhang, H. Zhang, M. Zhu, and W. Yang, "Self-assembly gridding α-MoO3 nanobelts for highly toxic H2S gas sensors," Sensors and Actuators B: Chemical, vol. 237, pp. 350-357, 2016.
    [43] S. I. Boyadjiev, V. Georgieva, N. Stefan, G. E. Stan, N. Mihailescu, A. Visan, I. N. Mihailescu, C. Besleaga, and I. M. Szilágyi, "Characterization of PLD grown WO3 thin films for gas sensing," Applied Surface Science, vol. 417, pp. 218-223, 2017.
    [44] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, "Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring," (in English), Sensors, Review vol. 10, no. 6, pp. 5469-5502, Jun 2010, doi: 10.3390/s100605469.
    [45] D. Xue, F. Zong, J. Zhang, X. Lin, and Q. Li, "Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone," Chemical Physics Letters, vol. 716, pp. 61-68, 2019, doi: 10.1016/j.cplett.2018.12.016.
    [46] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," Sensors, vol. 12, no. 7, pp. 9635-9665, 2012.
    [47] J. H. Werner and H. H. Güttler, "Barrier inhomogeneities at Schottky contacts," Journal of applied physics, vol. 69, no. 3, pp. 1522-1533, 1991.
    [48] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and Morkoç, "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, no. 4, p. 11, 2005.
    [49] S. R. Morrison, The chemical physics of surfaces. Springer Science & Business Media, 2013.
    [50] S. M. Sze, Semiconductor sensors. John Wiley & Sons, 1994.
    [51] P. Weisz, "Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis," The Journal of Chemical Physics, vol. 21, no. 9, pp. 1531-1538, 1953.
    [52] C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements," Sensors and Actuators B: Chemical, vol. 3, no. 2, pp. 147-155, 1991.
    [53] Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, and J.-H. Liu, "Metal oxide nanostructures and their gas sensing properties: a review," Sensors, vol. 12, no. 3, pp. 2610-2631, 2012.
    [54] Y. Hua-Jun, C. Ya-Qi, Y. Fang, P. Yue-Hua, H. Xiong-Wu, Z. Ding, and T. Dong-Sheng, "Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires," Chinese Physics B, vol. 20, no. 3, p. 036103, 2011.
    [55] J.-Y. Shen, L. Zhang, J. Ren, J.-C. Wang, H.-C. Yao, and Z.-J. Li, "Highly enhanced acetone sensing performance of porous C-doped WO 3 hollow spheres by carbon spheres as templates," Sensors and Actuators B: Chemical, vol. 239, pp. 597-607, 2017, doi: 10.1016/j.snb.2016.08.069.
    [56] P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, "WO 3-based photocatalysts: morphology control, activity enhancement and multifunctional applications," Environmental Science: Nano, vol. 4, no. 3, pp. 539-557, 2017.
    [57] S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, "Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties," Journal of Materials Chemistry C, vol. 6, no. 2, pp. 191-212, 2018.
    [58] V. R. Buch, A. K. Chawla, and S. K. Rawal, "Review on electrochromic property for WO3 thin films using different deposition techniques," Materials Today: Proceedings, vol. 3, no. 6, pp. 1429-1437, 2016.
    [59] J. Ram, R. G. Singh, F. Singh, V. Kumar, V. Chauhan, R. Gupta, U. Kumar, B. C. Yadav, and R. Kumar, "Development of WO3-PEDOT: PSS hybrid nanocomposites based devices for liquefied petroleum gas (LPG) sensor," Journal of Materials Science: Materials in Electronics, vol. 30, no. 14, pp. 13593-13603, 2019, doi: 10.1007/s10854-019-01728-9.
    [60] B. T. Sone, S. S. Nkosi, M. M. Nkosi, E. Coetsee-Hugo, H. C. Swart, and M. Maaza, "Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing," 2018.
    [61] Y. Zeng, Z. Hua, X. Tian, Y. Li, Z. Qiu, and T. Wang, "Modified Impregnation Synthesis of Fe-loaded WO3 Nanosheets and the Gas-sensing Properties," Chemistry Letters, vol. 46, no. 9, pp. 1353-1356, 2017, doi: 10.1246/cl.170555.
    [62] M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J. J. Pireaux, and X. Correig, "Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors," Sensors and Actuators B: Chemical, vol. 105, no. 2, pp. 271-277, 2005, doi: 10.1016/j.snb.2004.06.009.
    [63] C. C. Mardare and A. W. Hassel, "Review on the Versatility of Tungsten Oxide Coatings," physica status solidi (a), vol. 216, no. 12, p. 1900047, 2019.
    [64] D. Vernardou, H. Drosos, E. Spanakis, E. Koudoumas, N. Katsarakis, and M. Pemble, "Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD," Electrochimica acta, vol. 65, pp. 185-189, 2012.
    [65] F. Zheng, M. Zhang, and M. Guo, "Controllable preparation of WO3 nanorod arrays by hydrothermal method," Thin Solid Films, vol. 534, pp. 45-53, 2013.
    [66] M. Bendahan, R. Boulmani, J. Seguin, and K. Aguir, "Characterization of ozone sensors based on WO reactively sputtered films: influence of O concentration in the sputtering gas, and working temperature," Sensors and Actuators B: Chemical, vol. 100, no. 3, pp. 320-324, 2004, doi: 10.1016/j.snb.2004.01.023.
    [67] V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, "Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films," Physica B: Condensed Matter, vol. 454, pp. 141-147, 2014, doi: 10.1016/j.physb.2014.07.029.
    [68] J. F. Moulder, "Handbook of X-ray photoelectron spectroscopy," Physical electronics, pp. 230-232, 1995.
    [69] S.-F. Ho, S. Contarini, and J. Rabalais, "Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M= chromium, molybdenum, tungsten, vanadium, niobium and tantalum," Journal of Physical Chemistry, vol. 91, no. 18, pp. 4779-4788, 1987.
    [70] Y. D. Zhang, W. W. He, H. X. Zhao, and P. J. Li, "Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres," Vacuum, vol. 95, pp. 30-34, Sep 2013, doi: 10.1016/j.vacuum.2013.02.005.
    [71] H. Chang and Y.-S. Lai, "Morphology, structure and properties of diamond-like carbon films prepared by spin coating and RF magnetron sputtering," Materials Technology, vol. 31, no. sup1, pp. 10-16, 2016.
    [72] L. Liu, T. Wang, J. Huang, Z. He, Y. Yi, and K. Du, "Diamond-like carbon thin films with high density and low internal stress deposited by coupling DC/RF magnetron sputtering," Diamond and Related Materials, vol. 70, pp. 151-158, 2016.
    [73] R. M. Schmidt, P. Ries, A. Pflug, M. Wuttig, and T. Kubart, "Increasing the carbon deposition rate using sputter yield amplification upon serial magnetron co-sputtering," Surface and Coatings Technology, vol. 252, pp. 74-78, 2014.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE