| 研究生: |
林俊廷 Lin, Jung-Ting |
|---|---|
| 論文名稱: |
以時程模擬技巧預估浮動式雙體結構之波浪發電功率 Prediction of Generating Power by the Floating Twin-Hull Structure in Waves based on the Time Domain Simulation Technique |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | OWC 、波浪發電 、相對波高 、雙體浮體運動 |
| 外文關鍵詞: | OWC, Wave energy, Relative elevation, Twin-hull floating body motion |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以時程領域模擬技巧探討浮動式封閉雙體結構在縱向波中作振盪水柱(Oscillating Water Column,OWC)波浪發電系統時之相對波高與發電功率的結果,並配合台灣波浪能量較強的海域進行分析與預估,進而討論此波浪發電系統之可行性與未來發展。OWC發電系統是一種利用波浪與浮體結構間的相對運動推動氣體,將波浪能轉換為氣動能帶動發電機以達到發電目的的一種機構。由於頻率領域假設雙體結構僅受小振幅波影響,吃水深度不會隨運動而改變;而時程領域分析則可根據結構運動量反應出水下形狀每一瞬時的改變量並即時改變源點分佈之位置,藉由在雙體結構內部水面上佈點,以四階Runge-Kutta數值方法計算雙體結構內部水面各佈點每一瞬時之相對波高。因此時程領域模擬可考慮內部空氣體積的瞬時實際變化率,能較準確的反應各海況下的發電功率。
本研究首先模擬雙體結構之運動量與氣室內部相對波高,藉由2D截片理論(Strip Theory)與源點分佈法(Source Distribution Method),計算入射、繞射與輻射勢流,進而得到雙體結構之流體動力,再計算其運動量與相對波高,以及波浪擠壓雙體結構內部之空氣量、空氣體積流率與葉片出口風速,最終可以得到該機構的發電功率。並以台灣小琉球與龍洞地區之海況為標準,討論比較模擬結果之優缺,根據本文之模擬比較結果,確實比其他方法可較準確的預估發電功率。
This main purpose of the present study is to predict the power generated by the floating twin-hull structure in waves based on the time-domain simulation technique with experimental verification, and improve the efficiency of the oscillating water column(OWC) system.
The study used the Qusi-Steady State method to proceed the time-domain simulation. By calculating the hydrodynamic force coefficients with respect to different drafts of the OWC model, we can obtain the draft-varying hydrodynamic force coefficients, which are time-varying. The present study also take air damping, viscous force/moment, surge moment and exciting force into consideration, and the motion of the OWC structure is then treated by the 4th order Runge-Kutta method.
To calculate the hydrodynamic pressure along the body hull and water surface, we use the strip theory and source distribution method to solve the incident, diffraction, and radiation wave pressure. Then we can obtain the instantaneous relative wave elevation of every source point, which is applied to estimate the real waveform in the OWC air chamber and the total power work on the blade. To verify the numerical simulation, the present study would compare with two reference papers, i.e. one assume the wave elevation in the air chamber is piston wave and the other assumes the wave elevation is Sinusoid wave. According to the comparison results, the present study with the real wave elevation simulation in the chamber could produce more precise power than these two reference papers.
[1]A.F. de O. Falcao, “Wave energy utilization: A review of the technolo-gies”, Renewable and Sustainable Energy Reviews, n. 14, pp. 899-918, 2010.
[2]AQUARET(2012) Technology Images and Illustrations. Retrieved April 28, 2017, from http://www.aquaret.com/indexea3d.html?option=com_content&view=article&id=203&Itemid=344&lang=en#Animations
[3]B. Drew, A. R. Plummer, M. N. Sahinkaya “A review of wave energy converter technology”, Department of Mechanical Engineering, Uni-versity of Bath (UK), 2009.
[4]“Backward Bent Duct Buoy”. The International Society of Offshore and Polar Engineers.
[5]Barnard, C. (1887) The whistling buoy. Kessinger Publishing, Whitefish
[6]Chaplin,J., Farley., Prentice, M., Rainey, R., Rimmer, S., & Roach, A.(2007). Development of th ANACONDA all-rubber WEC. Proc. 7th EWTEC, 2007.
[7]Clemente “Wave Energy in Europe: current status and perspectives”, 2002
[8]Da Rosa, A. V. (2012). Fundamentals of Renewable Energy Processes. Academic press.
[9]Duckers, L. (2004). Wave energy. Renewable Renewable Energy: Power for a Sustainable Future. Oxford University Press, Oxford.
[10]EMEC.(2012). Wave Energy Device. Retrieved April 28, 2017, from http://www.emec.org.uk/marine-energy/wave-devices/
[11]Falca˜o AF de O (2000), “The shoreline OWC wave power plant at the Azores.” In: Proceedings of 4th European Wave Energy Conference, pp. 42–7, 2000.
[12]Fang, M.C., “A Study Of Hydrodynamic Interactions Of Two Ships In The Open Seas,” Stevens Inst. of Tech. PH.D. Dissertation, 1984.
[13]Fang, M.C., “The Motion of SWATH Ships in Waves,” Journal of Ship Research, Vol. 32, No. 4, pp. 238-245, 1988.
[14]Fang, Ming-Chung (1985), “Relative Elevation and Pressure Distribu-tion of a Two-Dimensional Catamaran Ship In Beam Wave,” Journal of SNAME, No.4, pp., 71-77, ROC, 1985.
[15]Fang, Ming-Chung and Her,S.-S., “The Analysis for the Nonlinear SWATH ship Motion in Head Wave”,NSC 81-0403-E-006-562 re-port,Nation Science Council,ROC,(1993)
[16]Fang, Ming-Chung and Shyu, Wei-June, 1992, “Hydrodynamic Pressure Distribution on Hull Surfaces of a seagoing SWATH Ship”,NSC 80-0403-E006-05 Report,National Science Council,Republic of China
[17]Fang, Ming-Chung, Lee, Ming-Ling and Lee, Chwang-Kwo, 1993 “Time History Simulation of Water Shipping on Ship in Large Longitu-dinal Waves”, Journal of Ship Research,(1993).
[18]Final Publishable Summary Report(2008). Retrieved April 28, 2017, from http://www.fp7-cores.eu/index.html
[19]Green, W.L.Campo, J.J.,Parker,J.E.,and Miller,J.A.,“Wave Energy Conversion With an Oscillating Water Column on a Fixed Offshore Platform,”
[20]Heath, T. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-gineering sciences, 370(1959), 235-245.
[21]Heath, T., Whittaker, T., & Boake, C. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). Paper presented at the 4th Eyropean wave energy conference, 2000.
[22]Henderson, R. (2006). Design, simulation, and testing of a novel hy-draulic power take-off system for the Pelamis wave energy converter. Renewable Energy, 31(2), 271-283, 2006.
[23]Hong, Y.S. (1980), “Improvement in the Prediction of Heave and Pitch Motion for SWATH Ships,” DINSRDC Development Center, Bethesda, Md., April 1980.
[24]Hong, Y.S., 1985, “The Effect of Strut Shape on SWATH ship mo-tion”,DTNSRDC-85/048, David W. Taylor Naval Ship Research and Development Center, Bethesda, Md.
[25]K.Burman, A. Walker, “Ocean Energy Technology Overview”, Pre-pared for the U.S. Department of Energy - Office of Energy Efficiency and Renewable Energy -Federal Energy Management Program, July 2009.
[26]Kim, C.H. (1976), “Motion and Load of a Catamaran Ship of Arbitrary Shape in a Seaway,” Journal of Hydronautics, Vol. 10, No.1, pp. 8-17, Jan. 1976.
[27]Kim, C.H., Chou, F.S. and Tien, D., “Motions and Hydrodynamic Loads of a Ship Advancing in Oblique Waves,”SNAME Trans, Vol.88, pp.225-256,1980.
[28]Kofoed, J.P., Frigard, P., Friis-Madsen, E., & Sørensen, H. C. (2006). Prototype testing of the wave energy converter wave dragon Renewable Energy, 31(2), 181-189. doi: 10.1016/j.renene.2005.09.05
[29]Korvin-Kroukovsky, B.V. and Jacobs,W.R. (1952), “Pitching and Heaving Motions of a Ship in Regular Waves,” SNAME Tran., Vol.65, 1952.
[30]Lee, C.M. (1977), “Prediction of Motion, Stability, and Wave Load of Small- Waterplane- Area Twin-Hull-Ships,” SNAME Trans, Vol.85, pp.94-130, 1977.
[31]Lewis T., “A strategic review of the wave energy resource in Ireland’’, “Wave Energy-Moving towards commercial viability’’, IMECHE Sem-inar, London (UK), 1999.
[32]Lin, C.C., Dorrell, D.G., and Hsieh, M.F. (2008), “A Small Segmented Oscillating Water Column using a Savonius Rotor Turbine,” In: Sus-tainable Energy Technologies, ICSET, Singapore, 2008.
[33]Martins, E., Ramos, F.S., Carrilho, L., Justino, P., Gato, L., Trigo, L., Neumann, F. (2005), “CeoDouro project: overall design of an OWC in the new Oporto breakwater.” In: Proceedings of 6th European Wave Tidal Energy Conference, pp. 273–80., 2005.
[34]Masuda,Y. (1971), “Wave-activated generator,” Int. Colloq Exposition Oceans, France: Bordeaux, 1971.
[35]Masuda,Y. (1979), “Experimental full-scale results of wave power machine Kaimei in 1978.” In: Proc First Symp Wave Energy Utilization, Gothenburg, Sweden, pp. 349–63, 1979.
[36]McCormick, M.E. (1981), Ocean Energy conversion, In: John Wiley & Sons Publishers, New York, 1981.
[37]Mohammad, Sameti & Elham, Farahi. (2014). “Output power for an oscillating water column wave energy convertion device”, University of Tehran, Iran.
[38]Nagata, S., Toyota, K., Yasutaka, Y., et al. (2007) Experimental research on primary conversion of a floating OWC
[39]Ocean Power Technologies. (2006). Commercialization Of PowerBuoy. Paper presented at the 25th Annual International Submerged Lands Management Conference.
[40]OCEANENERGY(2014). Retrieved April 28, 2017, from http://oceanenergy.ie/gallery/
[41]OceanLinx 1MW OWC(2014). Available online at: http://www.oceanlinx.com/ [accessed18.5.2015].
[42]Ohneda, H., Igarashi, S., Shinbo, O., Sekihar,a S., Suzuki, K., Kubota, H. (1991), et al, “Construction procedure of a wave power extracting caisson breakwater.” Tokyo: Proceedings of 3rd Symposium on Ocean Energy Utilization, pp. 171–9, 1991.
[43]Oregon Sea Grant.(2013). A Primer on Wave Energy Wave Energy De-vices: Oregon State University.
[44]Polinder, H., Damen, M., Gardner, F., & de Sousa Prado, M.G. (2006). Modelling and test results of the Archimedes wave swing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(8), 855-868. doi: 10.1243/09576509jpe284
[45]Prado, M. (2008). Aechimedes wave swing(AWS). Ocean wave energy. Berlin: Springer, 297-304
[46]Reilly, Edward T., Shin, Yung S. and Kotte, Ernst H.,1988, “A Predic-tion of Structural Load and Response of a SWATH Ship in Waves”, Naval Engineers Journal, pp. 251-421
[47]Shaw, R. (1982), Wave Energy: A design challenge, Ellis Horwood Publishers,1982.
[48]Stappenbelt, B. & Cooper, P., “Mechanical Model of a Floating Oscil-lating Water Column Wave Energy Conversion Device (2010),” 2009 Annual Bulletin of the Australian Institute of High Energetic Materials, Vol. 1, pp. 34-45, 2010.
[49]Thwaites ,B.(Editor),“Incompressible Aerodynamics”,Oxford Univer-sity Press. ,pp.405-421,(1960).
[50]Torre-Enciso, Y., Ortubia, I., Lo´ pez de Aguileta, L.I., Marque´ s, J. (2009). “Mutriku wave power plant: from the thinking out to the reality,” In: Proceedings 8th European Wave Tidal Energy Conference, p. 319–29, 2009.
[51]Tran, Xuan, B., Yanada, Hideki (2013),”Dynamic Friction Behaviors of Pneumatic Cylinder”, Hanoi University of Science and Technology, Hanoi, Vietnam.
[52]Waters, R., Stålberg, M., Danielsson, O., Svensson, O., Gustafsson, S., Strömstedt, E. Leijon, M. (2007). Experimental results from sea trials of an offshore wave energy system. Applied Physics Letters, 90(3), 034105.
[53]Wello (2012) Wello Oy Penguin. from http://www.wello.eu/penguin.php
[54]Whittatker, T.J.T. etals(2002),”Identification of non-linear flow charaacteristics of LIMPET shoreline OWC”, International offshore and Polar Engineering Conference, Kyushu,Japan,2002.
[55]林繼謙(2009), 岸基震盪水柱式波浪發電系統之設計, 國立成功大學系統及船舶機電工程學系碩士論文.
[56]李彥則(2015), 創新型二合一波浪獵能器之研究, 國立成功大學系統及船舶機電工程學系碩士論文.
[57]徐于淑(2013), 浮動式雙體結構波浪發電系統之研究, 國立成功大學系統及船舶機電工程學系碩士論文.
[58]郭禮安、黃文毅、楊瑞源、尤上林、侯春富、林明宏(2008),縱移式波浪發電系統作動功率與波能關聯性先期研究. Paper presented at the Proceeding of the 30th Ocean Engineering Conference in Taiwan, National Chiao Tung University.
[59]黃文毅.(2010), 台灣周邊海域波浪能源分布特性之研究, 國立台灣大學工程科學及海洋工程學研究所碩士論文.
[60]張顥譯(2014), 以浮體帶動之螺桿式波浪發電系統之研究, 國立成功大學系統及船舶機電工程學系碩士論文.
[61]工業技術研究院(2006), “我國海域能源蘊藏量分析技術之建立及開發方向評估,” 經濟部能源科技研究報告-94 年度執行報告, 135頁.
校內:2020-08-08公開