| 研究生: |
曹晉銘 Tsao, Chin-Ming |
|---|---|
| 論文名稱: |
以機載高光譜影像偵測小花蔓澤蘭分佈 Detecting the Distribution of Mikania Micrantha H.B.K. with Airborne Hyperspectrum Image |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 小花蔓澤蘭 、高光譜 、地面光譜 、波段選擇 、目標分類 |
| 外文關鍵詞: | Mikania Micrantha H.B.K, hyperspectrum, land spectrum, sensitive bands, target detection |
| 相關次數: | 點閱:86 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外來種-小花蔓澤蘭在台灣東、中、南部分佈廣泛,中低海拔處已對原生植群以及農業發展造成威脅。目前分佈區已往台灣中、北部以及高海拔處擴散,這將嚴重威脅台灣的生態系統。
台灣目前小花蔓澤蘭的分佈區域建置主要依照人工現地採樣以及標記,耗工又費時,在無法行至的區域亦無法準確判釋,使小花蔓澤蘭的真實分佈情形不易掌握。高光譜遙感探測的發展,解決了因光譜資訊不足而造成無法精確自動化分類植生的問題。CASI-1500機載高光譜資訊具有高光譜分辨率(<3.5 nm)以及高空間分辨率(25 cm~1.5 m)的特性,對於建置小花蔓澤蘭的空間分佈圖層是合適的工具。
本研究以PSR-1100地面輻射儀進行小花蔓澤蘭的地面光譜資訊收集,並以此挑選出具有差異性的波段區間,利用ENVI內的Target Detection Wizard套件以不同的波段區間組合及門檻值進行目標分類,並搭配現地調查的資料進行比對與反推。本研究比對現地調查的結果,找到最合適的分類組合:波段500~550、669~685、700~750nm搭配門檻值為4.5的自適應一致估計法(ACE),成功率為:93.7%。
Mikania Micrantha H.B.K, an alien and aggressive climber from South America, has infested many lowland forests, moist areas and farm in central-southern and eastern Taiwan. Now, Mikania Micrantha H.B.K has started to spread to the northern Taiwan and also climb to highland forests that has become a serious ecological problem.
Until now, detecting Mikania Micrantha H.B.K relies on field investigation that requires time and labor, the result is not reliable due to the not complete survey coverage. With hyperspectral remote sensing, the defect of automatic classification with lacking spectral information has been solved. CASI-1500 is an useful machine to build the distribution of Mikania Micrantha H.B.K with its high spectral resolution (<3.5nm) and high spatial resolution (25cm~1.5m).
This research chooses the threshold rules and sensitive bands to detect the target spectrum of Mikania Micrantha H.B.K by Target Detection Wizard with the land spectrum which is acquired with PSR-1100. After checking the result of many combinations in classification with the data of field investigation, the best combination of classification is using adaptive coherence estimator (ACE) method with bands: 500~550 nm, 669~685 nm and 700~750 nm in threshold: 0.45 and the rate of detection is 93.7%.
Adams, John B., Donald E. Sabol, Valerie Kapos, Raimundo Almerida Filho, Dar A. Roberts, Milton O. Smith and Alan R. Gillespie. (1995). Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52(2), 137-154.
Adler-Golden, S.M., M. W. Matthew, L.S. Bernstein, R.Y. Levine, A. Berk, S.C. Richtsmeier, P.K. Acharya, G.P. Anderson, G. Felde, J. Gardner, M. Hoke, L.S. Jeong, B. Pukall, J. Mello, A. Ratkowski, and H.-H. Burke. (1999). Atmospheric correction for short-wave spectral imagery based on MODTRAN 4. Paper presented at the PROC SPIE INT SOC OPT ENG, 3753, 61-69.
Alberotanza, L. (1999). Hyperspectral aerial images. A valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. International Journal of Remote Sensing, 20(3), 523-533.
Boardman, J.W. and F.A. Kruse. (1994). Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. Paper presented at the Proceedings of the Thematic Conference on Geologic Remote Sensing, 1, 1-407
Boardman, J.W., K.A. Kruse and R.O. Green. (1995). Mapping target signatures via partial unmixing of AVIRIS data.
Linda, Chalker‐Scott. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and photobiology, 70(1), 1-9.
Chang, Chein-I. (2003). Hyperspectral imaging: techniques for spectral detection and classification: Springer.
Chang, Chein-I, Jih-Ming Liu, Bin-Chang Chieu, Hsuan Ren, Chuin-Mu Wang, Chien-Shun Lo, Pau-Choo Chung, Ching-Wen Yang, Dye-Jyun Ma. (2000). Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Optical Engineering, 39(5), 1275-1281.
Chappelle, Emmett W., Moon S. Kim, & James E McMurtrey III. (1992). Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment, 39(3), 239-247.
Chen, Jiah Yeu, & Irving S Reed. (1987). A detection algorithm for optical targets in clutter. IEEE Transactions on Aerospace and Electronic Systems, (1), 46-59.
Cheriyadat, Anil, & L Mann Bruce. (2003). Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. Paper presented at the Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, 6, 3420-3422
Clark, Roger N, & Ted L Roush. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B7), 6329-6340.
Daughtry, C.S.T, C.L. Walthall, M.S. Kim, E Brown De Colstoun, & J.E. McMurtrey III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229-239.
Foody, GM, & D.P. Cox. (1994). Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. Remote Sensing, 15(3), 619-631.
Gamon, JA, & J.S. Surfus. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143(1), 105-117.
Gao, Bo-Cai, Kathleen B. Heidebrecht, & Alexander F.H. Goetz. (1993). Derivation of scaled surface reflectances from AVIRIS data. Remote Sensing of Environment, 44(2), 165-178.
Gao, Bo‐Cai, & Alexander F.H. Goetz. (1990). Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research: Atmospheres (1984–2012), 95(D4), 3549-3564.
Gitelson, Anatoly A, Yoav Zur, Olga B. Chivkunova, & Mark N. Merzlyak. (2002). Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶. Photochemistry and Photobiology, 75(3), 272-281.
Green, Andrew A, Mark Berman, r Paul Switze, & Maurice D. Craig. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65-74.
Harsanyi, Joseph C, & Chein-I Chang. (1994). Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 779-785.
Hestir, Erin L, Shruti Khanna, Margaret E. Andrew, Maria J. Santos, Joshua H. Viers, Jonathan A. Greenberg, Sepalika S. Rajapakse, Susan L. Ustin. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11), 4034-4047.
Hirano, Akira, Marguerite Madden, & Roy Welch. (2003). Hyperspectral image data for mapping wetland vegetation. Wetlands, 23(2), 436-448.
Huang, Zhi, Brian J. Turner, Stephen J. Dury, Ian R. Wallis, & William J. Foley. (2004). Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 93(1), 18-29.
Jin, Xiaoying, Scott Paswaters, & Harold Cline. (2009). A comparative study of target detection algorithms for hyperspectral imagery. Paper presented at the SPIE Defense, Security, and Sensing.
Jordan, Carl F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 663-666.
Kokaly, Raymond F, Don G. Despain, Roger N. Clark, & K. Eric Livo. (2003). Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, 84(3), 437-456.
Kraut, Shawn, Louis L Scharf, & Ronald W. Butler. (2005). The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic. IEEE Transactions on Signal Processing, 53(2), 427-438.
Kruse, F.A., A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, & A.F.H. Goetz. (1993). The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2), 145-163.
Lillesand, Thomas M., Ralph W. Kiefer, & Jonathan W. Chipman. (2004). Remote sensing and image interpretation: John Wiley & Sons Ltd.
Lawrence, Rick L., Shana D. Wood, Roger L. Sheley. (2006). Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100(3), 356-362
Manolakis, Dimitris, David Marden, & Gary A. Shaw. (2003). Hyperspectral image processing for automatic target detection applications. Lincoln Laboratory Journal, 14(1), 79-116.
Merényi, Erzsébet, William H. Farrand, Lawrence E. Stevens, T.S. Melis, & K. Chhibber. (2000). Mapping Colorado River ecosystem resources in Glen Canyon: Analysis of hyperspectral low-altitude AVIRIS imagery. Paper presented at the Proceedings of ERIM, 14th Int'l Conference and Workshops on Applied Geologic Remote Sensing.
Milton, Edward J, Michael E. Schaepman, Karen Anderson, Mathias Kneubühler, & Nigel Fox. (2009). Progress in field spectroscopy. Remote Sensing of Environment, 113, S92-S109.
Munden, R., P.J. Curran, & J.A. Catt. (1994). The relationship between red edge and chlorophyll concentration in the Broadbalk winter wheat experiment at Rothamsted.Int. J. Remote Sensing, 15(3), 705-709.
Mundt, Jacob T., Nancy F. Glenn, Keith T. Weber, Timothy S. Prather, Lawrence W. Lass, & Jeffrey Pettingill. (2005). Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques. Remote Sensing of Environment, 96(3), 509-517.
Naidoo, L, M.A. Cho, R. Mathieu, G. Asner. (2012). Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 167-179
Williams, Parker Amy, & E. Raymond Hunt Jr.. (2002). Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment, 82(2), 446-456.
Penuelas, J., I. Filella, L. Serrano, & R. Save. (1996). Cell wall elasticity and water index (R970 nm/R900 nm) in wheat under different nitrogen availabilities. International Journal of Remote Sensing, 17(2), 373-382.
Penuelas, J., J. Pinol, R. Ogaya, & I. Filella. (1997). Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18(13), 2869-2875.
Pontius, Jennifer, Richard Hallett, & Mary Martin. (2005). Using AVIRIS to assess hemlock abundance and early decline in the Catskills, New York. Remote Sensing of Environment, 97(2), 163-173.
Schlerf, Martin, Clement Atzberger, & Joachim Hill. (2005). Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2), 177-194.
Schmidt, K.S., & A.K. Skidmore. (2003). Spectral discrimination of vegetation types in a coastal wetland. Remote sensing of Environment, 85(1), 92-108.
Shippert, Peg. (2003). Introduction to hyperspectral image analysis. Online Journal of Space Communication, 3.
Sims, Daniel A., & John A. Gamon. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2), 337-354.
Slaton, Michèle R., E. Raymond Hunt, & William K. Smith. (2001). Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88(2), 278-284.
Smith, Milton O., Susan L. Ustin, John B. Adams, & Alan R. Gillespie. (1990). Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote sensing of Environment, 31(1), 1-26.
Underwood, E.C., M.J. Mulitsch, J.A. Greenberg, M.L. Whiting, S.L. Ustin, & S.C. Kefauver. (2006). Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery. Environmental Monitoring and Assessment, 121(1-3), 47-64.
Underwood, Emma, Susan Ustin, & Deanne DiPietro. (2003). Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86(2), 150-161.
Vane, Gregg, & Alexander F.H. Goetz. (1993). Terrestrial imaging spectrometry: current status, future trends. Remote Sensing of Environment, 43.
Yuhas, Roberta H., Alexander F.H. Goetz, & Joe W. Boardman. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. Paper presented at the Summaries of the third annual JPL airborne geoscience workshop, 1, 147-149.
李小娟、宮兆寧、劉曉萌與李靜. (2007). envi遙感影像處理教程: 中國環境科學出版社.
林恩楷. (2005). 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例; Detecting Invasive Plant Species Using Hyperspectral Satellite Imagery. 國立中央大學土木工程研究所碩士論文
浦瑞良與宮鵬. (2002). 高光譜遙測及其應用: 五南出版社.
高占國與張利權. (2006). 上海鹽沼植被的多季相地面光譜測量與分析. 生態學報, 26(3), 793-800.
張風麗、尹球、匡定波、李鳳霞與周秉榮. (2005). 環青海湖地區天然草地時序光譜特徵參量分析. 生態學報, 25(12), 3154-3160.
曾怡頴. (2011). 小花蔓澤蘭與香澤蘭反射光譜季節動態. 國立屏東科技大學森林系碩士論文
童慶禧與田國良. (1990). 中國典型地物波譜及其特徵分析. 北京: 科學出版社.
童慶禧、張兵與鄭蘭芬. (2006). 高光譜遙感--原理、技術與應用. 北京: 高等教育出版社.
黃士元、彭仁傑與郭曜豪. 小花蔓澤蘭在台灣之蔓延及監測. 小花蔓澤蘭危害與管理研討會專刊, 123-145.
黃士元、廖天賜與郭曜豪. (2003). 外來的植物殺手—小花蔓澤蘭. 自然保育季刊, 42, 13-19.
劉春红與李平. (2009). 高光譜遙感目標探測研究現狀與典型應用. 紀念中國農業工程學會成立30週年暨中國農業工程學會2009年學術年會(CSAE2009)論文集.
譚倩與趙永超. (2001). 植被光譜維特徵提取模型. 遙感信息(1), 14-18.
饒瑞佶. (1996). 組織培養環控室人工光源光譜分析與合成. 國立臺灣大學農業機械工程學研究所碩士論文.
Itres. (2013). http://www.itres.com/
Spectral Evolution. (2013). http://spectralevolution.com/
Quantum GIS. (2013). http://www.qgis.org/
ESRI. (2013). http://www.esri.com/software/arcgis
EXELIS. (2013). http://www.exelisvis.com/Home.aspx
GARMIN. (2013). http://www.garmin.com.tw/
Navistick. (2013). http://www.navistick.com/
Nikon. (2013). http://www.coolpix.com.tw/home/index.php
行政院林務局台東林區管理處. (2013). http://taitung.forest.gov.tw/
NGIS國土資訊系統-資料倉儲及標準制度分組網站. (2013). http://ngis.moi.gov.tw/lan_ch/
內政部101年度發展高光譜與光達技術結合之應用工作案. (2012). http://astdr.colife.org.tw/one_project.aspx?pid=172