| 研究生: |
何致緯 Ho, Chih-Wei |
|---|---|
| 論文名稱: |
Palladin 於大鼠心肌細胞中的分化與發育 The Role of Palladin in Cardiomyocyte Differentiation and Development |
| 指導教授: |
王浩文
Wang, Hao-Ven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | Palladin 、cardiomyocyte differentiation 、Nebulette 、H9c2. |
| 外文關鍵詞: | Palladin, cardiomyocyte differentiation, Nebulette, H9c2. |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Palladin為一種微絲結合蛋白(actin-binding protein, ABP),ABP可以與肌動蛋白微絲(actin filament)互相結合,參與調控細胞活動,例如細胞遷移、分裂、維持細胞結構與分化,palladin屬於myotilin/myopalladin/palladin家族一員,其中palladin因為不同起始位置以及選擇性剪切而有不同的isoform,目前受到最廣泛研究的為200、140、90 kDa isoform,先前的研究已經知道palladin (140~90 kDa)會和nebulette splicing form Nebl(1014 AA)的C端的SH3 domain產生直接的交互作用,而palladin(200~140 kDa)以及palladin(90 kDa)則不會。但此一交互作用是否影響心肌細胞的分化尚不清楚。本篇研究主要探討palladin對於心肌細胞分化的影響以及palladin與Nebulette在心肌分化過程中的分布位置。我們首先製備fibroblast-derived matrix (FDM)以提供細胞更易於分化的微環境,之後施以含低濃度血清分化培養基DMEM促使細胞分化,並分別使用西方墨點法與免疫螢光染色觀察蛋白表現與分布位置。結果發現細胞於FDM環境中與低濃度血清培養基培養下可以從myoblast分化至mature cardiomyocyte。心肌細胞分化標記蛋白表現逐漸上升,palladin 90 kDa先升後降,140 kDa為下降趨勢,200 kDa則無明顯表達,Nebulette則有先降後升的趨勢。在蛋白分布方面可以發現這些蛋白都與actin有共區域化的現象。在觀察完正常情況下蛋白的表現與分佈後。我們進行palladin siRNA轉染將palladin knockdown以阻止palladin與nebulette在心肌中的交互作用,但從結果來看可以發現只抑制了palladin 90 kDa isoform的表現,從後續的西方墨點法分析可以發現,心肌母細胞依然可以正常分化,從免疫螢光染色圖可以發現細胞分化初期的速度有加快的趨勢。本篇結果得到抑制palladin 90 kDa isoform的表現也許不會干擾palladin與Nebulette在心肌中的交互作用,但卻影響心肌母細胞分化初期的速度,在未來還需透過更多研究釐清palladin各種isoform參與心肌分化的機制。
Palladin is an actin associated protein reported to play an important role in regulating cell adhesion and cytoskeletal organization. As a member of the paladin/myotilin/myopalladin family, palladin has been categorized into 90 kDa, 140 kDa, and 200 kDa isoforms. Each of them is a widely expressed and can be at stress fibers, focal adhesions, Z-discs, as well as various actin-based subcellular structures. Nebulette, a homologous thin filament-associated proteins of nebulin, is a cardiac-specific isoform belonging to the nebulin proteins family in cardiac muscles. Nebulette, a cardiac-specific isoform is involved in various important protein-protein interactions. Several data showed the contribution of nebulette in the integrity of myocardial function and palladin has been shown to interact directly with nebulette. Based on these findings, we hypothesized that palladin-nebulette interaction may affect cardiac muscle cells differentiation. However, the role of palladin in cardiomyocyte differentiation is remanded unknown. The aim of this study is to determine the contribution of palladin to cardiomyocyte differentiation. Firstly, we generated a fibroblast-derived matrix (FDM) as a novel extra cellular matrix (ECM) platform to enhance rat cardiomyocyte H9c2 differentiation. Total protein was extracted from H9c2 cells then it was performed with antibodies against α-actinin 2, cardiac troponin T, nebulette and the three palladin isoforms to know level of protein expression at various differentiation stages. Immunofluorescence method was also used to localize cardiac differentiation markers within the cells. Finally, we knockdown palladin 90 kDa in cultured H9c2 cell by using siRNA transfection technic and studied the difference in protein expression by western blot and immunofluorescence. Compared to our control group cells, palladin-knockdown group did not show significant defect on cell differentiation. Nevertheless, in palladin knockdown cells nebulette tend to quickly spread in the cell while poly palladin spreading rate is reduced yet it colocalize with F-actin. Taken together, our finding suggest that palladin plays a potential important role in cardiomyocyte differentiation. We hope our research will provide more insight in the role of palladin in cardiomyocyte early stage differentiation and thus in cardiomyopathy studies.
1. Arimura, T., Nakamura, T., Hiroi, S., Satoh, M., Takahashi, M., Ohbuchi, N., ... & Matsumori, A. (2000). Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Human genetics, 107(5), 440-451.
2. Bang, M. L., Gregorio, C., & Labeit, S. (2002). Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. Journal of structural biology, 137(1-2), 119-127.
3. Bang, M. L., Mudry, R. E., McElhinny, A. S., Trombitás, K., Geach, A. J., Yamasaki, R., & Labeit, S. (2001). Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. The Journal of cell biology, 153(2), 413-428.
4. Blondelle, J., Shapiro, P., Domenighetti, A. A., & Lange, S. (2017). Cullin E3 ligase activity is required for myoblast differentiation. Journal of molecular biology, 429(7), 1045-1066.
5. Boraas, L. C., Guidry, J. B., Pineda, E. T., & Ahsan, T. (2016). Cytoskeletal expression and remodeling in pluripotent stem cells. PloS one, 11(1), e0145084.
6. Boukhelifa, M., Hwang, S. J., Valtschanoff, J. G., Meeker, R. B., Rustioni, A., & Otey, C. A. (2003). A critical role for palladin in astrocyte morphology and response to injury.Molecular and Cellular Neuroscience, 23(4), 661-668.
7. Boukhelifa, M., Parast, M. M., Valtschanoff, J. G., LaMantia, A. S., Meeker, R. B., & Otey, C. A. (2001). A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Molecular biology of the cell, 12(9), 2721-2729.
8. Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., & Parmacek, M. S. (2003). Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and cellular biology, 23(7), 2425-2437.
9. Esham, M., Bryan, K., Milnes, J., Holmes, W. B., & Moncman, C. L. (2007). Expression of nebulette during early cardiac development. Cell motility and the cytoskeleton, 64(4), 258-273.
10. Gallot, Y. S., Bohnert, K. R., Straughn, A. R., Xiong, G., Hindi, S. M., & Kumar, A. (2018). PERK regulates skeletal muscle mass and contractile function in adult mice. The FASEB Journal,33(2), 1946-1962.
11. Goley, E. D., Rammohan, A., Znameroski, E. A., Firat-Karalar, E. N., Sept, D., & Welch, M. D. (2010). An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. Proceedings of the National Academy of Sciences, 107(18), 8159-8164.
12. Golji, J., & Mofrad, M. R. (2013). The interaction of vinculin with actin. PLoS computational biology, 9(4), e1002995.
13. Gomes, A. V., Guzman, G., Zhao, J., & Potter, J. D. (2002). Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development insights into the role of Troponin T isoforms in the heart. Journal of Biological Chemistry, 277(38), 35341-35349.
14. Gupta, V., Discenza, M., Guyon, J. R., Kunkel, L. M., & Beggs, A. H. (2012). α-Actinin-2 deficiency results in sarcomeric defects in zebrafish that cannot be rescued by α-actinin-3 revealing functional differences between sarcomeric isoforms. The FASEB Journal, 26(5), 1892-1908.
15. Jin, J. P., Huang, Q. Q., Yeh, H. I., & Lin, J. J. C. (1992). Complete nucleotide sequence and structural organization of rat cardiac troponin T gene: a single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. Journal of molecular biology, 227(4), 1269-1276.
16. Jin, L., Gan, Q., Zieba, B. J., Goicoechea, S. M., Owens, G. K., Otey, C. A., & Somlyo, A. V. (2010). The actin associated protein palladin is important for the early smooth muscle cell differentiation. PloS one, 5(9), e12823.
17. Lecuit, T., & Lenne, P. F. (2007). Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature reviews Molecular cell biology, 8(8), 633.
18. Luo, H., Liu, X., Wang, F., Huang, Q., Shen, S., Wang, L., & Chen, S. (2005). Disruption of palladin results in neural tube closure defects in mice. Molecular and Cellular Neuroscience, 29(4), 507-515.
19. Mana M. Parast., & Otey, C. A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology, 150(3), 643-656.
20. Mastrototaro, G., Liang, X., Li, X., Carullo, P., Piroddi, N., Tesi, C., & Sheikh, F. (2015). Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovascular research,107(2), 216-225.
21. Moncman, C. L., & Wang, K. (1999). Functional dissection of nebulette demonstrates actin binding of nebulin‐like repeats and Z‐line targeting of SH3 and linker domains. Cell motility and the cytoskeleton, 44(1), 1-22.
22. Moncman, C. L., & Wang, K. (2002). Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Experimental cell research, 273(2), 204-218.
23. Moncman, C. L., & Wang, K. (2002). Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Experimental cell research, 273(2), 204-218.
24. Najm, P., & El-Sibai, M. (2014). Palladin regulation of the actin structures needed for cancer invasion. Cell adhesion & migration, 8(1), 29-35.
25. Ogut, O., Hossain, M. M., & Jin, J. P. (2003). Interactions between nebulin-like motifs and thin filament regulatory proteins. Journal of Biological Chemistry, 278(5), 3089-3097.
26. Otey, C. A., Rachlin, A., Moza, M., Arneman, D., & Carpen, O. (2005). The palladin/myotilin/myopalladin family of actin‐associated scaffolds. International review of cytology, 246, 31-58.
27. Parast, M. M., & Otey, C. A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology, 150(3), 643-656.
28. Pollard, T. D., Blanchoin, L., & Mullins, R. D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual review of biophysics and biomolecular structure, 29(1), 545-576.
29. Purevjav, E., Varela, J., Morgado, M., Kearney, D. L., Li, H., Taylor, M. D., & Labeit, S. (2010). Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. Journal of the American College of Cardiology, 56(18), 1493-1502.
30. Qiao, W., Yang, L., Li, X. Y., Cao, N., Wang, W. Z., Chai, C., & Lu, Y. (2011). The cardiovascular inhibition functions of hydrogen sulfide within the nucleus tractus solitarii are mediated by the activation of KATP channels and glutamate receptors mechanisms. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 66(4), 287-292.
31. Rachlin, A. S., & Otey, C. A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science, 119(6), 995-1004.
32. Rhee, D., Sanger, J. M., & Sanger, J. W. (1994). The premyofibril: evidence for its role in myofibrillogenesis. Cell motility and the cytoskeleton, 28(1), 1-24.
33. Rönty, M., Taivainen, A., Moza, M., Otey, C. A., & Carpén, O. (2004). Molecular analysis of the interaction between palladin and α‐actinin. FEBS letters, 566(1-3), 30-34.
34. Salmikangas, P., Mykkänen, O. M., Grönholm, M., Heiska, L., Kere, J., & Carpén, O. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Human molecular genetics, 8(7), 1329-1336.
35. Sinha, S., Wamhoff, B. R., Hoofnagle, M. H., Thomas, J., Neppl, R. L., Deering, T., & Owens, G. K. (2006). Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem cells, 24(7), 1678-1688.
36. Slater, C. (2017). The structure of human neuromuscular junctions: some unanswered molecular questions. International journal of molecular sciences, 18(10), 2183.
37. Titushkin, I., & Cho, M. (2007). Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophysical journal, 93(10), 3693-3702.
38. Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316(5832), 1749-1752.
39. Wang, X., Osinska, H., Gerdes, A. M., & Robbins, J. (2002). Desmin filaments and cardiac disease: establishing causality. Journal of cardiac failure, 8(6), S287-S292.
40. Yang, Z., Bowles, N. E., Scherer, S. E., Taylor, M. D., Kearney, D. L., Ge, S., ... & Godsel, L. M. (2006). Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation research, 99(6), 646-655.
41. Yoshida, T., Gan, Q., & Owens, G. K. (2008). Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. American Journal of Physiology-Cell Physiology,295(5), C1175-C1182.