| 研究生: |
曾宇呈 Tseng, Yu-Cheng |
|---|---|
| 論文名稱: |
鋰離子電容負極碳材結構對儲能之影響 Influence of Carbon Anode Structure on the Performance of Lithium-Ion Capacitors |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 鋰離子電容器 、石墨 、軟碳 、硬碳 、嵌鋰阻抗 |
| 外文關鍵詞: | lithium-ion capacitors, graphite, soft carbon, hard carbon, Li+ insertion resistance |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電容(lithium-ion Capacitors, LICs)為結合電雙層電容(Electric double-layer Capacitors, EDLCs)與鋰離子電池(lithium-ion Batteries, LIBs)兩者優點的儲能裝置,其正極為具高比表面積之活性碳,負極分別為鋰化後之石墨、軟碳、硬碳,三種碳材料。LICs具有較EDLCs高的能量密度,功率密度較LIBs高,但仍稍低於ELDCs。本研究中探討上述三種不同負極碳材料之石墨烯層堆疊規律性、結晶度、d-spacing等材料結構對於鋰離子電容儲能效果之影響。而預鋰化後的硬碳負極,與中鋼碳素活性碳正極(ACS系列)搭配1M LiPF6 @EC+DMC電解液製備成鋰離子電容後具有較優良之效能。由於硬碳在結構上具有部分石墨微晶區及部分排列不規則區,且硬碳具有較大的層間距(d spacing),使其在快速充放電時相較於其他的負極材料有較高的電容維持率。由於硬碳此種特殊的結構,使鋰離子在硬碳結構中進行嵌入/嵌出時的阻抗較小。HC-LIC在操作電位2-4 V下,以0.5 A g-1的電流進行2000圈循環壽命測試可保持約96%之電容維持率,此外,HC-LIC以1 A g-1的電流進行10000圈循環壽命測試亦可保持約81%之電容維持率,顯示硬碳負極在高充放電速率下進行長效測試之穩定性,而HC-LIC的能量密度(95 Wh kg-1)與功率密度(13 kW kg-1)亦優於其他文獻,展現硬碳應用於鋰離子電容的優異性。本研究結果指出使用直接接觸預鋰化法搭配具有部分非結晶區及較大的層間距的負極材料,可提升鋰離子電容在快速充放電以及具有較優異的循環壽命表現。
By combining the energy storage features of electric double-layer capacitors (EDLCs) and lithium-ion batteries (LIBs), lithium-ion capacitors (LICs) have been studied widely as a novel energy storage device with high energy density, large power density and excellent cycling stability. Recently, many different kinds of carbon materials have been introduced as the electrode material of LICs due to cheap cost, environment friendly and superior electrochemical stability. In this work, we combine AC cathode with three different structure carbon materials, that is graphite (GR), soft carbon (SC), and hard carbon (HC), as anode to assemble LICs. These anode materials with different structure effect show different Li+ insertion resistance, and thus influence the electrochemical performance of LICs. Among all LICs in this work, HC-LIC shows the best high rate performance (53% at 7 A g-1) and cycling performance (81% after 10k cycle). HC-LIC also shows higher energy density (95 Wh kg-1) and power density (13 kW kg-1) comparing to others literature.
[1] Burke, A., "Ultracapacitors: Why, How, and Where Is the Technology" Journal of power sources 2000, 91 (1), 37-50.
[2] Li, B., Zheng, J., Zhang, H., Jin, L., Yang, D., Lv, H., Shen, C., Shellikeri, A., Zheng, Y., Gong, R., "Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium‐Ion Capacitors" Advanced Materials 2018, 30 (17), 1705670.
[3] Simon, P., Gogotsi, Y., Materials for Electrochemical Capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific: 2010; pp 320-329.
[4] Miller, J. R., Simon, P., "Electrochemical Capacitors for Energy Management" science 2008, 321 (5889), 651-652.
[5] Winter, M., Brodd, R. J., What Are Batteries, Fuel Cells, and Supercapacitors? ACS Publications: 2004.
[6] Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava, A., Conway, M., Mohana Reddy, A. L., Yu, J., Vajtai, R., "Ultrathin Planar Graphene Supercapacitors" Nano letters 2011, 11 (4), 1423-1427.
[7] Aravindan, V., Gnanaraj, J., Lee, Y.-S., Madhavi, S., "Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors" Chemical reviews 2014, 114 (23), 11619-11635.
[8] Samantara, A. K., Ratha, S., Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective. Springer: 2017.
[9] Afif, A., Rahman, S. M., Azad, A. T., Zaini, J., Islan, M. A., Azad, A. K., "Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage–a Review" Journal of Energy Storage 2019, 25, 100852.
[10] González, A., Goikolea, E., Barrena, J. A., Mysyk, R., "Review on Supercapacitors: Technologies and Materials" Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
[11] Wei, L., Yushin, G., "Nanostructured Activated Carbons from Natural Precursors for Electrical Double Layer Capacitors" Nano Energy 2012, 1 (4), 552-565.
[12] Pandolfo, A. G., Hollenkamp, A. F., "Carbon Properties and Their Role in Supercapacitors" Journal of power sources 2006, 157 (1), 11-27.
[13] Simon, P., Burke, A., "Nanostructured Carbons: Double-Layer Capacitance and More" The electrochemical society interface 2008, 17 (1), 38.
[14] Emmenegger, C., Mauron, P., Züttel, A., Nützenadel, C., Schneuwly, A., Gallay, R., Schlapbach, L., "Carbon Nanotube Synthesized on Metallic Substrates" Applied Surface Science 2000, 162, 452-456.
[15] Lee, H., Cho, M. S., Kim, I. H., Do Nam, J., Lee, Y., "Ruox/Polypyrrole Nanocomposite Electrode for Electrochemical Capacitors" Synthetic Metals 2010, 160 (9-10), 1055-1059.
[16] Kim, I.-H., Kim, K.-B., "Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications" Journal of The Electrochemical Society 2006, 153 (2), A383-A389.
[17] Sakiyama, K., Onishi, S., Ishihara, K., Orita, K., Kajiyama, T., Hosoda, N., Hara, T., "Deposition and Properties of Reactively Sputtered Ruthenium Dioxide Films" Journal of The Electrochemical Society 1993, 140 (3), 834.
[18] Yuan, C.-Z., Gao, B., Zhang, X.-G., "Electrochemical Capacitance of Nio/Ru0. 35v0. 65o2 Asymmetric Electrochemical Capacitor" Journal of Power sources 2007, 173 (1), 606-612.
[19] Chang, J.-K., Huang, C.-H., Lee, M.-T., Tsai, W.-T., Deng, M.-J., Sun, I.-W., "Physicochemical Factors That Affect the Pseudocapacitance and Cyclic Stability of Mn Oxide Electrodes" Electrochimica acta 2009, 54 (12), 3278-3284.
[20] Sharma, V., Sahoo, A., Sharma, Y., Mohanty, P., "Synthesis of Nanoporous Hypercrosslinked Polyaniline (Hcpani) for Gas Sorption and Electrochemical Supercapacitor Applications" RSC Advances 2015, 5 (57), 45749-45754.
[21] Zhang, H., Li, H., Zhang, F., Wang, J., Wang, Z., Wang, S., "Polyaniline Nanofibers Prepared by a Facile Electrochemical Approach and Their Supercapacitor Performance" Journal of Materials Research 2008, 23 (9), 2326-2332.
[22] Fan, L. Z., Hu, Y. S., Maier, J., Adelhelm, P., Smarsly, B., Antonietti, M., "High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support" Advanced Functional Materials 2007, 17 (16), 3083-3087.
[23] Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J., "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors" Chemical Society Reviews 2015, 44 (21), 7484-7539.
[24] Jiménez-Cordero, D., Heras, F., Gilarranz, M. A., Raymundo-Piñero, E., "Grape Seed Carbons for Studying the Influence of Texture on Supercapacitor Behaviour in Aqueous Electrolytes" Carbon 2014, 71, 127-138.
[25] Wang, H., Sun, X., Liu, Z., Lei, Z., "Creation of Nanopores on Graphene Planes with Mgo Template for Preparing High-Performance Supercapacitor Electrodes" Nanoscale 2014, 6 (12), 6577-6584.
[26] Demarconnay, L., Raymundo-Piñero, E., Béguin, F., "A Symmetric Carbon/Carbon Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Solution" Electrochemistry Communications 2010, 12 (10), 1275-1278.
[27] Sevilla, M., Fuertes, A. B., "Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors" ACS nano 2014, 8 (5), 5069-5078.
[28] Jung, N., Kwon, S., Lee, D., Yoon, D. M., Park, Y. M., Benayad, A., Choi, J. Y., Park, J. S., "Synthesis of Chemically Bonded Graphene/Carbon Nanotube Composites and Their Application in Large Volumetric Capacitance Supercapacitors" Advanced Materials 2013, 25 (47), 6854-6858.
[29] Perricone, E., Chamas, M., Cointeaux, L., Leprêtre, J.-C., Judeinstein, P., Azais, P., Béguin, F., Alloin, F., "Investigation of Methoxypropionitrile as Co-Solvent for Ethylene Carbonate Based Electrolyte in Supercapacitors. A Safe and Wide Temperature Range Electrolyte" Electrochimica Acta 2013, 93, 1-7.
[30] Yu, X., Ruan, D., Wu, C., Wang, J., Shi, Z., "Spiro-(1, 1′)-Bipyrrolidinium Tetrafluoroborate Salt as High Voltage Electrolyte for Electric Double Layer Capacitors" Journal of Power Sources 2014, 265, 309-316.
[31] Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., Scrosati, B., Ionic-Liquid Materials for the Electrochemical Challenges of the Future. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 129-137.
[32] Huang, Y., Li, Y., Gong, Q., Zhao, G., Zheng, P., Bai, J., Gan, J., Zhao, M., Shao, Y., Wang, D., "Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors" ACS applied materials & interfaces 2018, 10 (19), 16572-16580.
[33] Gong, X., Cheng, J., Liu, F., Zhang, L., Zhang, X., "Nickel–Cobalt Hydroxide Microspheres Electrodepositioned on Nickel Cobaltite Nanowires Grown on Ni Foam for High-Performance Pseudocapacitors" Journal of Power Sources 2014, 267, 610-616.
[34] Brandt, A., Ramirez-Castro, C., Anouti, M., Balducci, A., "An Investigation About the Use of Mixtures of Sulfonium-Based Ionic Liquids and Propylene Carbonate as Electrolytes for Supercapacitors" Journal of Materials Chemistry A 2013, 1 (40), 12669-12678.
[35] Yoo, H. D., Markevich, E., Salitra, G., Sharon, D., Aurbach, D., "On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion" Materials Today 2014, 17 (3), 110-121.
[36] Pieta, P., Obraztsov, I., D'Souza, F., Kutner, W., "Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors" ECS Journal of Solid State Science and Technology 2013, 2 (10), M3120.
[37] Chen, X., Paul, R., Dai, L., "Carbon-Based Supercapacitors for Efficient Energy Storage" National Science Review 2017, 4 (3), 453-489.
[38] Endo, M., Takeda, T., Kim, Y., Koshiba, K., Ishii, K., "High Power Electric Double Layer Capacitor (Edlc's); from Operating Principle to Pore Size Control in Advanced Activated Carbons" Carbon science 2001, 1 (3-4), 117-128.
[39] Bagotsky, V. S., Fundamentals of Electrochemistry. John Wiley & Sons: 2005; Vol. 44.
[40] Zhang, L. L., Zhao, X., "Carbon-Based Materials as Supercapacitor Electrodes" Chemical Society Reviews 2009, 38 (9), 2520-2531.
[41] Young, H. D., Freedman, R. A., Sandin, T., Ford, A. L., University Physics. Addison-Wesley Reading, MA: 1996; Vol. 9.
[42] Brett, C., Oliveira Brett, A. M., Electrochemistry: Principles, Methods, and Applications. 1993.
[43] Qu, D., Shi, H., "Studies of Activated Carbons Used in Double-Layer Capacitors" Journal of Power Sources 1998, 74 (1), 99-107.
[44] Suzuki, M., Adsorption Engineering. Kodansha: 1990.
[45] Gregg, S. J., Sing, K. S. W., Salzberg, H., "Adsorption Surface Area and Porosity" Journal of The electrochemical society 1967, 114 (11), 279C.
[46] Russel, W., The Adsorption of Gases and Vapors. Volume I: Physical Adsorption (Brunauer, Stephen). ACS Publications: 1944.
[47] Ying, J. Y., Mehnert, C. P., Wong, M. S., "Synthesis and Applications of Supramolecular‐Templated Mesoporous Materials" Angewandte Chemie International Edition 1999, 38 (1‐2), 56-77.
[48] Brunauer, S., Emmett, P. H., Teller, E., "Adsorption of Gases in Multimolecular Layers" Journal of the American chemical society 1938, 60 (2), 309-319.
[49] Barrett, E. P., Joyner, L. G., Halenda, P. P., "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms" Journal of the American Chemical society 1951, 73 (1), 373-380.
[50] Tarazona, P., Marconi, U. M. B., Evans, R., "Phase Equilibria of Fluid Interfaces and Confined Fluids: Non-Local Versus Local Density Functionals" Molecular Physics 1987, 60 (3), 573-595.
[51] Landers, J., Gor, G. Y., Neimark, A. V., "Density Functional Theory Methods for Characterization of Porous Materials" Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 437, 3-32.
[52] Jagiello, J., Kenvin, J., Olivier, J. P., Lupini, A. R., Contescu, C. I., "Using a New Finite Slit Pore Model for Nldft Analysis of Carbon Pore Structure" Adsorption Science & Technology 2011, 29 (8), 769-780.
[53] Jagiello, J., Olivier, J. P., "2d-Nldft Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation" Carbon 2013, 55, 70-80.
[54] Li, G., Yang, Z., Yin, Z., Guo, H., Wang, Z., Yan, G., Liu, Y., Li, L., Wang, J., "Non-Aqueous Dual-Carbon Lithium-Ion Capacitors: A Review" Journal of Materials Chemistry A 2019, 7 (26), 15541-15563.
[55] Han, P., Xu, G., Han, X., Zhao, J., Zhou, X., Cui, G., "Lithium Ion Capacitors in Organic Electrolyte System: Scientific Problems, Material Development, and Key Technologies" Advanced Energy Materials 2018, 8 (26), 1801243.
[56] Amatucci, G. G., Badway, F., Du Pasquier, A., Zheng, T., "An Asymmetric Hybrid Nonaqueous Energy Storage Cell" Journal of the Electrochemical Society 2001, 148 (8), A930-A939.
[57] Zhang, S. S., "Eliminating Pre-Lithiation Step for Making High Energy Density Hybrid Li-Ion Capacitor" Journal of Power Sources 2017, 343, 322-328.
[58] Shellikeri, A., Watson, V., Adams, D., Kalu, E., Read, J., Jow, T., Zheng, J., Zheng, J., "Investigation of Pre-Lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures" Journal of The Electrochemical Society 2017, 164 (14), A3914-A3924.
[59] Sivakumar, C., Nian, J.-N., Teng, H., "Poly (O-Toluidine) for Carbon Fabric Electrode Modification to Enhance the Electrochemical Capacitance and Conductivity" Journal of power sources 2005, 144 (1), 295-301.
[60] Li, B., Dai, F., Xiao, Q., Yang, L., Shen, J., Zhang, C., Cai, M., "Nitrogen-Doped Activated Carbon for a High Energy Hybrid Supercapacitor" Energy & Environmental Science 2016, 9 (1), 102-106.
[61] Cho, M.-Y., Kim, M.-H., Kim, H.-K., Kim, K.-B., Yoon, J. R., Roh, K. C., "Electrochemical Performance of Hybrid Supercapacitor Fabricated Using Multi-Structured Activated Carbon" Electrochemistry communications 2014, 47, 5-8.
[62] Mhamane, D., Aravindan, V., Kim, M.-S., Kim, H.-K., Roh, K. C., Ruan, D., Lee, S. H., Srinivasan, M., Kim, K.-B., "Silica-Assisted Bottom-up Synthesis of Graphene-Like High Surface Area Carbon for Highly Efficient Ultracapacitor and Li-Ion Hybrid Capacitor Applications" Journal of Materials Chemistry A 2016, 4 (15), 5578-5591.
[63] Wang, Q., Wen, Z., Li, J., "Carbon Nanotubes/Tio2 Nanotubes Hybrid Supercapacitor" Journal of nanoscience and nanotechnology 2007, 7 (9), 3328-3331.
[64] Wang, Q., Wen, Z., Li, J., "A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a Tio2–B Nanowire Anode" Advanced Functional Materials 2006, 16 (16), 2141-2146.
[65] Du Pasquier, A., Plitz, I., Gural, J., Badway, F., Amatucci, G., "Power-Ion Battery: Bridging the Gap between Li-Ion and Supercapacitor Chemistries" Journal of Power Sources 2004, 136 (1), 160-170.
[66] Shellikeri, A., Yturriaga, S., Zheng, J., Cao, W., Hagen, M., Read, J., Jow, T., Zheng, J., "Hybrid Lithium-Ion Capacitor with Lifepo4/Ac Composite Cathode–Long Term Cycle Life Study, Rate Effect and Charge Sharing Analysis" Journal of Power Sources 2018, 392, 285-295.
[67] Hu, X., Deng, Z., Suo, J., Pan, Z., "A High Rate, High Capacity and Long Life (Limn2o4+ Ac)/Li4ti5o12 Hybrid Battery–Supercapacitor" Journal of Power Sources 2009, 187 (2), 635-639.
[68] Cericola, D., Novák, P., Wokaun, A., Kötz, R., "Hybridization of Electrochemical Capacitors and Rechargeable Batteries: An Experimental Analysis of the Different Possible Approaches Utilizing Activated Carbon, Li4ti5o12 and Limn2o4" Journal of Power Sources 2011, 196 (23), 10305-10313.
[69] Goodenough, J. B., Park, K.-S., "The Li-Ion Rechargeable Battery: A Perspective" Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
[70] Chen, F., Li, R., Hou, M., Liu, L., Wang, R., Deng, Z., "Preparation and Characterization of Ramsdellite Li2ti3o7 as an Anode Material for Asymmetric Supercapacitors" Electrochimica acta 2005, 51 (1), 61-65.
[71] Ding, J., Hu, W., Paek, E., Mitlin, D., "Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium" Chemical reviews 2018, 118 (14), 6457-6498.
[72] Azuma, H., Imoto, H., Yamada, S. i., Sekai, K., "Advanced Carbon Anode Materials for Lithium Ion Cells" Journal of power sources 1999, 81, 1-7.
[73] Loeffler, B. N., Bresser, D., Passerini, S., Copley, M., "Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities" Johnson matthey technology review 2015, 59 (1), 34-44.
[74] Lee, G. W., Kim, M. S., Jeong, J. H., Roh, H. K., Roh, K. C., Kim, K. B., "Comparative Study of Li4ti5o12 Composites Prepared Withpristine, Oxidized, and Surfactant‐Treated Multiwalled Carbon Nanotubes for High‐Power Hybrid Supercapacitors" ChemElectroChem 2018, 5 (17), 2357-2366.
[75] Wang, H., Zhu, C., Chao, D., Yan, Q., Fan, H. J., "Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors" Advanced materials 2017, 29 (46), 1702093.
[76] Aravindan, V., Cheah, Y. L., Mak, W. F., Wee, G., Chowdari, B. V., Madhavi, S., "Fabrication of High Energy-Density Hybrid Supercapacitors Using Electrospun V^ Sub 2^ O^ Sub 5^ Nanofibers with a Self-Supported Carbon Nanotube Network" ChemPlusChem 2012, 77 (7), 570.
[77] Wang, H., Xu, Z., Li, Z., Cui, K., Ding, J., Kohandehghan, A., Tan, X., Zahiri, B., Olsen, B. C., Holt, C. M., "Hybrid Device Employing Three-Dimensional Arrays of Mno in Carbon Nanosheets Bridges Battery–Supercapacitor Divide" Nano letters 2014, 14 (4), 1987-1994.
[78] Kim, M., Xu, F., Lee, J. H., Jung, C., Hong, S. M., Zhang, Q., Koo, C. M., "A Fast and Efficient Pre-Doping Approach to High Energy Density Lithium-Ion Hybrid Capacitors" Journal of Materials Chemistry A 2014, 2 (26), 10029-10033.
[79] Kim, H. J., Choi, S., Lee, S. J., Seo, M. W., Lee, J. G., Deniz, E., Lee, Y. J., Kim, E. K., Choi, J. W., "Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells" Nano letters 2016, 16 (1), 282-288.
[80] De La Llave, E., Borgel, V., Park, K.-J., Hwang, J.-Y., Sun, Y.-K., Hartmann, P., Chesneau, F.-F., Aurbach, D., "Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior" ACS applied materials & interfaces 2016, 8 (3), 1867-1875.
[81] Sun, Y., Tang, J., Qin, F., Yuan, J., Zhang, K., Li, J., Zhu, D.-M., Qin, L.-C., "Hybrid Lithium-Ion Capacitors with Asymmetric Graphene Electrodes" Journal of Materials Chemistry A 2017, 5 (26), 13601-13609.
[82] Bryngelsson, H., Stjerndahl, M., Gustafsson, T., Edström, K., "How Dynamic Is the Sei?" Journal of Power Sources 2007, 174 (2), 970-975.
[83] Sun, H., He, X., Ren, J., Li, J., Jiang, C., Wan, C., "Hard Carbon/Lithium Composite Anode Materials for Li-Ion Batteries" Electrochimica acta 2007, 52 (13), 4312-4316.
[84] Fei, L., Yoo, S. H., Villamayor, R. A. R., Williams, B. P., Gong, S. Y., Park, S., Shin, K., Joo, Y. L., "Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication" ACS Applied Materials & Interfaces 2017, 9 (11), 9738-9746.
[85] Liu, N., Hu, L., McDowell, M. T., Jackson, A., Cui, Y., "Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries" ACS nano 2011, 5 (8), 6487-6493.
[86] Li, Y., Fitch, B., "Effective Enhancement of Lithium-Ion Battery Performance Using Slmp" Electrochemistry communications 2011, 13 (7), 664-667.
[87] Forney, M. W., Ganter, M. J., Staub, J. W., Ridgley, R. D., Landi, B. J., "Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (Slmp)" Nano letters 2013, 13 (9), 4158-4163.
[88] Liu, Y., Horikawa, K., Fujiyosi, M., Imanishi, N., Hirano, A., Takeda, Y., "Layered Lithium Transition Metal Nitrides as Novel Anodes for Lithium Secondary Batteries" Electrochimica acta 2004, 49 (21), 3487-3496.
[89] Sun, H., He, X., Li, J., Ren, J., Jiang, C. Y., Wan, C., "Hard Carbon/Li2. 6co0. 4n Composite Anode Materials for Li-Ion Batteries" Solid State Ionics 2006, 177 (15-16), 1331-1334.
[90] Liu, Y., Hanai, K., Horikawa, K., Imanishi, N., Hirano, A., Takeda, Y., "Electrochemical Characterization of a Novel Si–Graphite–Li2. 6co0. 4n Composite as Anode Material for Lithium Secondary Batteries" Materials chemistry and physics 2005, 89 (1), 80-84.
[91] Zhao, J., Lu, Z., Liu, N., Lee, H.-W., McDowell, M. T., Cui, Y., "Dry-Air-Stable Lithium Silicide–Lithium Oxide Core–Shell Nanoparticles as High-Capacity Prelithiation Reagents" Nature communications 2014, 5 (1), 1-8.
[92] Sun, Y., Lee, H. W., Seh, Z. W., Zheng, G., Sun, J., Li, Y., Cui, Y., "Lithium Sulfide/Metal Nanocomposite as a High‐Capacity Cathode Prelithiation Material" Advanced Energy Materials 2016, 6 (12), 1600154.
[93] Park, K., Yu, B. C., Goodenough, J. B., "Li3n as a Cathode Additive for High‐Energy‐Density Lithium‐Ion Batteries" Advanced Energy Materials 2016, 6 (10), 1502534.
[94] Liu, C., Li, T., Zhang, H., Song, Z., Qu, C., Hou, G., Zhang, H., Ni, C., Li, X., "Dmf Stabilized Li3n Slurry for Manufacturing Self-Prelithiatable Lithium-Ion Capacitors" Science Bulletin 2020, 65 (6), 434-442.
[95] Shanmukaraj, D., Grugeon, S., Laruelle, S., Douglade, G., Tarascon, J.-M., Armand, M., "Sacrificial Salts: Compensating the Initial Charge Irreversibility in Lithium Batteries" Electrochemistry communications 2010, 12 (10), 1344-1347.
[96] Park, M. S., Lim, Y. G., Hwang, S. M., Kim, J. H., Kim, J. S., Dou, S. X., Cho, J., Kim, Y. J., "Scalable Integration of Li5feo4 Towards Robust, High‐Performance Lithium‐Ion Hybrid Capacitors" ChemSusChem 2014, 7 (11), 3138-3144.
[97] Kim, M. G., Cho, J., "Air Stable Al 2 O 3-Coated Li 2 Nio 2 Cathode Additive as a Surplus Current Consumer in a Li-Ion Cell" Journal of Materials Chemistry 2008, 18 (48), 5880-5887.
[98] Noh, M., Cho, J., "Role of Li6coo4 Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material" Journal of the Electrochemical Society 2012, 159 (8), A1329.
[99] Jeżowski, P., Crosnier, O., Deunf, E., Poizot, P., Béguin, F., Brousse, T., "Safe and Recyclable Lithium-Ion Capacitors Using Sacrificial Organic Lithium Salt" Nature materials 2018, 17 (2), 167-173.
[100] Naoi, K., Ishimoto, S., Miyamoto, J.-i., Naoi, W., "Second Generation ‘Nanohybrid Supercapacitor’: Evolution of Capacitive Energy Storage Devices" Energy & Environmental Science 2012, 5 (11), 9363-9373.
[101] Bard, A. J., Faulkner, L. R., "Fundamentals and Applications" Electrochemical Methods 2001, 2 (482), 580-632.
[102] Pell, W. G., Conway, B. E., "Voltammetry at a De Levie Brush Electrode as a Model for Electrochemical Supercapacitor Behaviour" Journal of Electroanalytical Chemistry 2001, 500 (1-2), 121-133.
[103] Cullity, B. D., Elements of X-Ray Diffraction. Addison-Wesley Publishing: 1956.
[104] Yan, M., Chen, F., Zhang, J., Anpo, M., "Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties" The Journal of Physical Chemistry B 2005, 109 (18), 8673-8678.
[105] Tu, C.-W., Liu, K.-Y., Chien, A.-T., Lee, C.-H., Ho, K.-C., Lin, K.-F., "Performance of Gelled-Type Dye-Sensitized Solar Cells Associated with Glass Transition Temperature of the Gelatinizing Polymers" European polymer journal 2008, 44 (3), 608-614.
[106] Kudryavtsev, A. 3d Reconstruction in Scanning Electron Microscope: From Image Acquisition to Dense Point Cloud. Bourgogne Franche-Comté, 2017.
[107] Kaskhedikar, N. A., Maier, J., "Lithium Storage in Carbon Nanostructures" Advanced Materials 2009, 21 (25‐26), 2664-2680.
[108] Maire, P., Evans, A., Kaiser, H., Scheifele, W., Novák, P., "Colorimetric Determination of Lithium Content in Electrodes of Lithium-Ion Batteries" Journal of The Electrochemical Society 2008, 155 (11), A862.
[109] Gallagher, K. G., Dees, D. W., Jansen, A. N., Abraham, D. P., Kang, S.-H., "A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for Lixc6" Journal of The Electrochemical Society 2012, 159 (12), A2029.
[110] Sun, X., Zhang, X., Liu, W., Wang, K., Li, C., Li, Z., Ma, Y., "Electrochemical Performances and Capacity Fading Behaviors of Activated Carbon/Hard Carbon Lithium Ion Capacitor" Electrochimica Acta 2017, 235, 158-166.
[111] Sivakkumar, S. R., Pandolfo, A., "Evaluation of Lithium-Ion Capacitors Assembled with Pre-Lithiated Graphite Anode and Activated Carbon Cathode" Electrochimica Acta 2012, 65, 280-287.
[112] Jow, T. R., Delp, S. A., Allen, J. L., Jones, J.-P., Smart, M. C., "Factors Limiting Li+ Charge Transfer Kinetics in Li-Ion Batteries" Journal of The Electrochemical Society 2018, 165 (2), A361.
[113] An, S. J., Li, J., Daniel, C., Mohanty, D., Nagpure, S., Wood III, D. L., "The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (Sei) and Its Relationship to Formation Cycling" Carbon 2016, 105, 52-76.
[114] Zhang, J., Shi, Z., Wang, J., Shi, J., "Composite of Mesocarbon Microbeads/Hard Carbon as Anode Material for Lithium Ion Capacitor with High Electrochemical Performance" Journal of Electroanalytical Chemistry 2015, 747, 20-28.
[115] Kumagai, S., Abe, Y., Saito, T., Eguchi, T., Tomioka, M., Kabir, M., Tashima, D., "Lithium-Ion Capacitor Using Rice Husk-Derived Cathode and Anode Active Materials Adapted to Uncontrolled Full-Pre-Lithiation" Journal of Power Sources 2019, 437, 226924.
[116] Li, C., Zhang, X., Wang, K., Sun, X., Ma, Y., "A 29.3 Wh Kg− 1 and 6 Kw Kg− 1 Pouch-Type Lithium-Ion Capacitor Based on Siox/Graphite Composite Anode" Journal of Power Sources 2019, 414, 293-301.
[117] Park, E., Chung, D. J., Park, M.-S., Kim, H., "Pre-Lithiated Carbon-Coated Si/Siox Nanospheres as a Negative Electrode Material for Advanced Lithium Ion Capacitors" Journal of Power Sources 2019, 440, 227094.
校內:2025-08-17公開