簡易檢索 / 詳目顯示

研究生: 林芷璿
Lin, Chih-Hsuan
論文名稱: 建立營建工程碳排負載進度表
Development of carbon loaded schedules for construction projects
指導教授: 張行道
Chang, Andrew S.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 166
中文關鍵詞: 碳排負載進度表碳足跡道路工程碳排熱點碳排拉平
外文關鍵詞: Carbon loaded schedule, Carbon footprint, Road construction, Carbon emission hotspots, Carbon emission leveling
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球對永續環境議題日益重視,各國陸續發布2050淨零碳排目標,而台灣制定碳盤查相關法規,草擬以年度溫室氣體排放量徵收碳費。然而營建工程常橫跨數年,營造公司尚未有系統化的方法對工程碳盤查,計算工程期間的碳排量,作為繳交碳費或採取減碳策略之依據。
    本研究建立一套導出碳排負載進度表的方法,由成本負載進度表作為基礎,根據工程進度計算工程期間的碳排量,碳排放計算邊界為材料生產(含原料取得)、材料運輸及現場施工階段,供營造公司碳盤查工程時,計算工程期間不同年度的碳排量。以一個道路工程為例說明導出過程、分析碳排分布,利用案例工程資料,包含詳細價目表、工程預定進度表、工程碳排資料表,計算材料、載具及機具數量在工程期間產生的碳排,分析三者碳排大小關係,並分別比較材料-運輸、材料-機具、成本-碳排的關聯性,最後找出材料、運輸、機具的碳排熱點。
    研究結果指出,案例工程成本和碳排負載曲線整體分布類似,經分析相關性高,相關係數為0.87。材料、運輸、機具碳排占比分別為90%、2%、8%,三者碳排高低都和材料數量有關,相關性高,而在大項類別工程中,碳排前四高之工程為排水、地工、橋梁、道路,占比分別為40%、29%、19%、11%,照明、景觀、雜項工程合計僅占1%。分析找出的工程碳排熱點,材料多為混凝土構造物,鋼筋、混凝土用量高之作業,碳排就高;運輸為曳引車和預拌車;機具為舖築機、壓路機、履帶式吊車等。
    最後本研究提出碳排拉平概念,單一工程和多個工程,透過改變作業排程使碳排在工程期間平均排放。

    Global attention has been paid to sustainable environmental issues and many countries announced 2050 net-zero carbon targets. Taiwan has established the regulations for carbon quantification and plans to levy carbon fees based on annual greenhouse gas (GHG) emissions. However, construction projects often span several years, and construction companies lack systematic methods for carbon auditing and calculating GHG emissions during the project period.
    This study develops a method to derive a carbon emission loaded schedule based on project progress, covering material production, transportation, and on-site construction. Using a road construction project as an example, the study calculates emissions from materials, vehicles, and equipment, and analyzes their distribution and relationships.
    The results show a high correlation (0.87) between the cost and carbon emissions of the loaded curves. Materials account for 90% of the emissions, transportation 2%, and equipment 8%. Major emissions come from drainage, earthworks, bridges, and roads. The study identifies concrete structures, tractors, and heavy equipment as key emission hotspots.
    Finally, the study proposes carbon emission leveling, adjusting work schedules to distribute emissions more evenly over the project period.

    摘要 i Abstract ii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 xi 第一章 緒論 1 1.1研究目的 1 1.2研究方法與流程 2 1.3研究範圍與限制 4 第二章 文獻回顧 5 2.1企業及工程碳管理 5 2.1.1碳管理相關規範 5 2.1.2生命週期碳評估 8 2.2碳排放評估及計算 10 2.2.1碳排放評估方法 10 2.2.2碳排放計算方法 13 2.2.3碳排放計算與階段分布 17 2.2.4碳排資料品質 19 第三章 碳排負載進度表資料收集 22 3.1碳排負載進度表建立先期作業 22 3.1.1碳排負載進度表建立流程 22 3.1.2碳排計算公式及係數選用 26 3.2資料來源 29 3.2.1工程碳排資料表 29 3.2.2材料資料 32 3.2.3運輸資料 35 3.2.4機具資料 37 第四章 碳排負載進度表導出 40 4.1工程進度表 40 4.1.1進度作業 40 4.1.2成本負載進度表 46 4.2碳排放計算 51 4.2.1材料碳排 51 4.2.2運輸碳排 55 4.2.3機具碳排 57 4.3碳排負載進度表 60 4.3.1詳細碳排負載進度表 60 4.3.2中階碳排負載進度表 66 4.3.3綱要碳排負載進度表 70 第五章 碳排負載進度表分析 75 5.1綜合分析 75 5.1.1七類工程之碳排與占比 75 5.1.2綱要碳排負載進度表 79 5.1.3碳排負載進度關聯性 81 5.2碳排熱點 85 5.2.1材料熱點 86 5.2.2運輸熱點 95 5.2.3機具熱點 103 5.2.4碳排負載拉平 111 第六章 結論與建議 114 6.1結論 114 6.2建議 116 參考文獻 118 英文文獻 118 中文文獻 123 附錄一 案例工程詳細價目表 126 附錄二 複合材料單位碳排推算 136 附錄三 工程碳排資料表 141 附錄四 中階進度表 144 附錄五 中階進度碳排 149

    英文文獻
    1. Abolhasani, S., Frey, H.C., Kim, K., Rasdorf, W., Lewis, P., and Pang, S.H. (2008), “Real-World In-Use Activity, Fuel Use, and Emissions for Nonroad Construction Vehicles: A Case Study for Excavators,” Journal of the Air & Waste Management Association, Volume 58, pp. 1033~1046.
    2. Ansah, M.K., Chen, X., Yang, H., Lu, L., and Li, H. (2021), “Developing a tier-hybrid uncertainty analysis approach for lifecycle impact assessment of a typical high-rise residential building,” Resources, Conservation and Recycling, Volume 167, 105424.
    3. Aryan, Y., Dikshit, A., and Shinde, A. (2023), “A critical review of the life cycle assessment studies on road pavements and road infrastructures,” Journal of Environmental Management, Volume 336, 117697.
    4. Ashtiani, M. and Muench, S. (2022), “Using construction data and whole life cycle assessment to establish sustainable roadway performance benchmarks,” Journal of Cleaner Production, Volume 380, Part 1, 135031.
    5. Atmaca, A. and Atmaca, N. (2022), “Carbon footprint assessment of residential buildings, a review and a case study in Turkey,” Journal of Cleaner Production, Volume 340, 130691.
    6. Aviel, V., Erik, L., and Edwin, W. (2019), “Anatomy of Emissions Trading Systems: What is the EU ETS?” Environmental Science & Policy, Volume 98, pp. 11~19.
    7. British Standards Institution (2008), PAS 2050: 2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, BSI, U.K.
    8. British Standards Institution (2011), The Guide to PAS 2050: 2011 How to carbon footprint your products, identify hotspots and reduce emissions in your supply chain, BSI, U.K.
    9. Bui, B. and Villiers, C. (2017), “Carbon emissions management control systems: Field study evidence,” Journal of Cleaner Production, Volume 166, pp. 1283~1294.
    10. Cang, Y., Luo, Z., Yang, L., and Han, B. (2020), “A new method for calculating the embodied carbon emissions from buildings in schematic design: Taking “building element” as basic unit,” Building and Environment, Volume 185, 107306.
    11. Chen, J., Zhao, F., Liu, Z., Ou, X., and Hao, H. (2017), “Greenhouse gas emissions from road construction in China: A province-level analysis,” Journal of Cleaner Production, Volume 168, pp. 1039~1047.
    12. De Tré, G., De Mol, R., and Bronselaer, A. (2018), “Handling veracity in multi-criteria decision-making: A multi-dimensional approach.” Information Sciences, Volumes 460~461, pp. 541~554.
    13. Gailani, A., Cooper, S., Allen, S., Pimm, A., Taylor, P., and Gross, R. (2024), “Assessing the potential of decarbonization options for industrial sectors,” Joule, Volume 8, Issue 3, pp. 576~603.
    14. Hatmoko, J., Hidayat, A., Setiawati, A., and Prasetyo, A. (2018), “Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia,” E3S Web of Conferences, 31(11), 07001.
    15. Hickmann, T. (2017), “Voluntary global business initiatives and the international climate negotiations: A case study of the Greenhouse Gas Protocol,” Journal of Cleaner Production, Volume 169, pp. 94~104.
    16. International Organization for Standardization (2018), ISO 14064-1 (2018) Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals, Geneva, Switzerland.
    17. International Organization for Standardization (2018), ISO 14067 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification, Geneva, Switzerland.
    18. Jiang, R. and Wu, P. (2019), “Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions,” Transportation Research Part D: Transport and Environment, Volume 77, pp. 148~163.
    19. Kim, J., Koo, C., Kim, C., Hong, T., and Park, H. (2015), “Integrated CO2, cost, and schedule management system for building construction projects using the earned value management theory,” Journal of Cleaner Production, Volume 103, pp. 275~285.
    20. Kisku, N., Joshi, H., Ansari, M., Panda, S., Nayak, S., and Dutta, S.C. (2017), “A critical review and assessment for usage of recycled aggregate as sustainable construction material,” Construction and Building Materials, Volume 131, pp. 721~740.
    21. Kuittinen, M. (2016), “Does the use of recycled concrete lower the carbon footprint in humanitarian construction?” International Journal of Disaster Resilience in the Built Environment, Volume 7, No. 5, pp. 472~488.
    22. Kuittinen, M. and Winter, S. (2015), “Carbon Footprint of Transitional Shelters,” International Journal of Disaster Risk Science, Volume 6, pp. 226~237.
    23. Lai, K., Rahiman, N., Othman, N., Ali, K., Lim, Y., Moayedi, F., and Dzahir, M. (2023), “Quantification process of carbon emissions in the construction industry,” Energy and Buildings, Volume 289, 113025.
    24. Leticia, C.V., Mariolina, L., and Matteo, M. (2021), “Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis,” Energy Policy, Volume 156, 112464.
    25. Li, D., Wang, Y., Liu, Y., Sun, S., and Gao, Y. (2020), “Estimating life-cycle CO2 emissions of urban road corridor construction: A case study in Xi’an, China,” Journal of Cleaner Production, Volume 255, 120033.
    26. Liang, Z., Deng, H., Xie, H., Chen, B., Sun, M., and Wang, Y. (2023), “Rethinking the paper product carbon footprint accounting standard from a life-cycle perspective,” Journal of Cleaner Production, Volume 393, 136352.
    27. Liu, G., Huang, R., Li, K., Shrestha, A., and Fu, X. (2022), “Greenhouse Gas Emissions Management in Prefabrication and Modular Construction Based on Earned Value Management,” Journal of Construction Engineering and Management, Volume 148, Issue 6, 04022034.
    28. Liu, N., Wang, Y., Bai, Q., Liu, Y., Wang, P., Xue, S., Yu, Q., and Li, Q. (2022), “Road life-cycle carbon dioxide emissions and emission reduction technologies: A review,” Journal of Traffic and Transportation Engineering, Volume 9, Issue 4, pp. 532~555.
    29. Liu, T., Wang, Q., and Su, B. (2016), “A review of carbon labeling: Standards, implementation, and impact,” Renewable and Sustainable Energy Reviews, Volume 53, pp. 68~79.
    30. Liu, Y., Zhang, J., Xu, J., Wang, Y., Li, B., and Zhang, S. (2023), “Carbon emission-based life cycle assessment of rural residential buildings constructed with engineering bamboo: A case study in China,” Journal of Building Engineering, Volume 76, 107182.
    31. Mao, R., Duan, H., Dong, D., Zuo, J., Song, Q., Liu, G., Hu, M., Zhu, J., and Dong, B. (2017), “Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China,” Journal of Cleaner Production, Volume 166, pp. 40~48.
    32. Morewood, J. (2023), “Building energy performance monitoring through the lens of data quality: A review,” Energy and Buildings, Volume 279, 112701.
    33. Nawarathna, A., Alwan, Z., Gledson, B., and Fernando, N. (2021), “Embodied carbon in commercial office buildings: Lessons learned from Sri Lanka,” Journal of Building Engineering, Volume 42, 102441.
    34. Nikiforova, A. (2020), “Definition and evaluation of data quality: User-oriented data object-driven approach to data quality assessment,” Baltic Journal of Modern Computing, 8(3), pp. 391~432.
    35. Rusek, R., Melendez Frigola, J., and Colomer Llinas, J. (2022), “Influence of occupant presence patterns on energy consumption and its relation to comfort: a case study based on sensor and crowd-sensed data,” Energy Sustainability and Society, 12(1), 13.
    36. Sizirici, B., Fseha, Y., Cho, C.S., Yildiz, I., and Byon, Y.J. (2021), “A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation,” Materials, Volume 14, 6094.
    37. Udovicic, M., Bazdaric, K., Bilic-Zulle, L., and Petrovecki, M. (2007), “What we need to know when calculating the coefficient of correlation?” Biochemia Medica, 17(1), pp. 5~10.
    38. Wang F., Xie, J., Wu, S., Li, J., Barbieri, D., and Zhang, L. (2021), “Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies,” Renewable and Sustainable Energy Reviews, Volume 141, 110823.
    39. Wang, X., Duan, Z., Wu, L., and Yang, D. (2015), “Estimation of carbon dioxide emission in highway construction: a case study in southwest region of China,” Journal of Cleaner Production, Volume 103, pp. 705~714.
    40. Wolf, C., Pomponi, F., and Moncaster, A. (2017), “Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice,” Energy and Buildings, Volume 140, pp. 68~80.
    41. Wong, P.S., Ng, S.T., and Shahidi, M. (2013), “Towards understanding the contractor's response to carbon reduction policies in the construction projects,” International Journal of Project Management, 31 (7), pp. 1042~1056.
    42. World Green Building Council (WGBC) (2019), “New report: the building and construction sector can reach net zero carbon emission by 2050,” https://worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published, accessed on May. 14, 2024.
    43. Wu, P., Xia, B., and Wang, X. (2015), “The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review,” Renewable and Sustainable Energy Reviews, Volume 47, pp. 142~150.
    44. Zhang, L., Yang, Y., Li, Q., Gao, W., Qian, F., and Song, L. (2021), “Economic optimization of microgrids based on peak shaving and CO2 reduction effect: A case study in Japan,” Journal of Cleaner Production, Volume 321, 128973.
    45. Zhang, X. and Zhang, X. (2023), “An automated project carbon planning, monitoring and forecasting system integrating building information model and earned value method," Journal of Cleaner Production, Volume 397, 136526.
    中文文獻
    1. 工程會(2013),工程施工綱要規範一般規定 第01103章,行政院公共工程委員會,台北。
    2. 方冠今(2017),為碳足跡計算編制施工預算工項之改善-以港灣工程為例,碩士論文,國立成功大學土木工程研究所。
    3. 水保局(2014),龍蛟溪野溪整治六期工程 碳排放量估算及盤查成果報告,行政院農業委員會水土保持局,台北。
    4. 王彥智(2010),營建節能減碳數字的資料品質評估,碩士論文,國立成功大學土木工程研究所。
    5. 台北市政府(2022),臺北市淨零排放管理自治條例,台北市議會,台北。
    6. 交通部公路局(2023),https://suhua.thb.gov.tw/cp.aspx?n=10617,2023年11月9日上網資料。
    7. 朱士傑(2014),材料製造與施工階段環境衝擊分析-以兩橋梁為例,碩士論文,國立成功大學土木工程研究所。
    8. 何臻(2022),道路工程碳排放基線與考量鋪面厚度下之每平方米面積碳排放,碩士論文,國立成功大學土木工程研究所。
    9. 林子言(2021),建立台灣道路的碳足跡基線,碩士論文,國立成功大學土木工程研究所。
    10. 金管會(2023),上市櫃公司永續發展行動方案,金融監督管理委員會,台北。
    11. 國發會 (2022),臺灣2050淨零排放路徑及策略總說明, https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76# ,2023年11月13日上網資料。
    12. 張又升(2002),建築物生命週期二氧化碳減量評估,博士論文,國立成功大學土木工程研究所。
    13. 張行道(2015),精進公共工程進度管理制度教育訓練簡報,行政院公共工程委員會,台北。
    14. 張行道(2023),工程碳足跡與減碳策略 綠道路推廣說明會簡報,成大綠道路與基礎設施研究中心,台南。
    15. 張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,碩士論文,國立成功大學土木工程研究所。
    16. 陳彥豪(2023),碳盤查資料品質評估,碩士論文,國立成功大學土木工程研究所。
    17. 陳昭秀(2013),橋梁工程碳排放量案例分析之研究,碩士論文,國立中央大學營建管理研究所。
    18. 黃价成(2000),時程管理體系整合做法,碩士論文,國立成功大學土木工程研究所。
    19. 經濟部(2021),溫室氣體¬¬-產品碳足跡-量化之要求事項與指導綱要 CNS 14067:2021,經濟部標準檢驗局,台北。
    20. 運研所(2013),交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部運輸研究所,台北。
    21. 鄭曜東(2022),營建業碳排放估算與管控系統開發,碩士論文,淡江大學土木工程研究所。
    22. 環保署(2017),https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx ,2023年8月31日上網資料。
    23. 環保署(2019),碳足跡產品類別規則 基礎建設-道路,行政院環保署,台北。
    24. 環保署(2020a),https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx,2023年 9月23日上網資料。
    25. 環保署(2020b),推動產品碳足跡管理要點,行政院環保署,台北。
    26. 環保署(2022),溫室氣體排放量盤查作業指引,行政院環保署,台北。
    27. 環境部(2023a),氣候變遷因應法,全國法規資料庫,台北。
    28. 環境部(2023b),溫室氣體排放量盤查登錄及查驗管理辦法,全國法規資料庫,台北。
    29. 環境部(2024),https://join.gov.tw/policies/detail/992c0984-6507-4531-ab7f-94a5fa0ccf52 ,2024年6月30日上網資料。
    30. 羅元佑(2016),碳足跡計算假設與流程之建立與印證-以某道路工程為例,碩士論文,國立成功大學土木工程研究所。

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE