| 研究生: |
陳家祥 Chen, Jia-Shiang |
|---|---|
| 論文名稱: |
應用進化式演算法於光柵設計以開發密碼系統與熱放射器 Design of Gratings with Evolutionary Algorithms for Cryptosystems and Thermal Emitters |
| 指導教授: |
陳玉彬
Chen, Yu-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 密碼系統 、進化式演算法 、光柵 、輻射性質 、嚴格耦合波分析 、熱放射器 |
| 外文關鍵詞: | Cryptosystem, Evolutionary algorithms (EAs), Gratings, Radiative properties, Rigorous coupled-wave analysis (RCWA), Thermal emitters |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微奈米週期結構展現了調變光學與熱輻射性質的能力,而被應用各式元件的開發,而由於應用所須的頻譜特性大相逕庭,如何進行有效率的設計為一重要的課題。進化式演算法與群體智能方法近年來被廣為發展及大量運用於工程最佳化上,並已獲致諸多良好成果,故本研究主題在結合嚴格耦合波分析理論與數種具隨機性之最佳化方法,對滿足特殊輻射性質之微奈米週期結構進行外型及尺寸的設計。應用一為本文提出之光學密碼系統,因週期結構光學性質為極複雜之多參數函數,提供了密碼系統所須之安全性。而其中結構尺寸等參數被運用為解密的關鍵資訊,則以基因演算法與另一混成式最佳化方法獲得。應用二為窄頻及寬頻之波長選擇性熱放射器,係調變週期結構於紅外光頻譜的輻射性質。此處光柵形貌與尺寸的最佳化則運用了差值進化法,甚至加入一種使用微小族群的技巧以在高參數維度的問題上進一步增加搜尋效率。
Micro/Nanoscale periodic structures are promising for tailoring optical and thermal properties for various applications. Since their expected spectrum differ greatly with applications, an efficient way of design is important. Evolutionary algorithms and methods with swarm intelligence have been developed and applied on wide engineering optimization problems. However, the way to employ them efficiently on various problems is still critical. In this work, the rigorous coupled-wave analysis and several stochastic optimization methods are integrated to design the profiles of period structures for specific radiative properties. Firstly, optical cryptographic schemes will be proposed. The optical responses of periodic structures provide the desired complexity of cryptosystems to achieve security. In which the geometric parameters can be applied as keys to messages, and they were obtained with genetic algorithms and a hybrid method. Another investigated application is selective thermal emitters with narrow/wide bandwidth for the potential of surface gratings on manipulating infrared emission. The differential evolution method was applied to optimize the profile of gratings. Moreover, a micro- operator will be suggested for high-dimensional problems for enhancing search efficiency.
1. D. Dasgupta, and Z. Michalewicz, Evolutionary algorithms in engineering applications (Springer, Berlin ; London, 1997).
2. K. E. Parsopoulos, and M. N. Vrahatis, Particle swarm optimization and intelligence : advances and applications (Information Science Reference, Hershey, PA, 2010).
3. Z. M. Zhang, Nano/microscale heat transfer (McGraw-Hill, New York, 2007).
4. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
5. A. Taflove, and S. C. Hagness, Computational electrodynamics : the finite-difference time-domain method (Artech House, London, 2005).
6. E. G. Johnson, and M. A. G. Abushagur, "Microgenetic-algorithm optimization methods applied to dielectric gratings," J. Opt. Soc. Am. A 12, 1152-1160 (1995).
7. S. Martin, J. Rivory, and M. Schoenauer, "Synthesis of optical multilayer systems using genetic algorithms," Appl. Optics 34, 2247-2254 (1995).
8. S. Tibuleac, and R. Magnusson, "Narrow-linewidth bandpass filters with diffractive thin-film layers," Opt. Lett. 26, 584-586 (2001).
9. M. Shokooh-Saremi, and R. Magnusson, "Particle swarm optimization and its application to the design of diffraction grating filters," Opt. Lett. 32, 894-896 (2007).
10. N. H. Nghia, Y. L. Lo, Y.-B. Chen, and T. Y. Yang, "Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme," Appl. Optics 50, 415-426 (2011).
11. I. Celanovic, F. O'Sullivan, M. Ilak, J. Kassakian, and D. Perreault, "Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications," Opt. Lett. 29, 863-865 (2004).
12. J. Drevillon, and P. Ben-Abdallah, "Ab initio design of coherent thermal sources," J. Appl. Phys. 102, 114305 (2007).
13. R. R. Rammohan, B. G. Farfan, M. F. Su, I. El-Kady, and M. M. R. Taha, "Hybrid genetic optimization for design of photonic crystal emitters," Eng. Optimiz. 42, 791-809 (2010).
14. M. Shokooh-Saremi, and M. M. Mirsalehi, "Comparison of antireflection surfaces based on two-dimensional binary gratings and thin-film coatings," Appl. Optics 44, 3877-3884 (2005).
15. M. Iwanaga, "Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach," J. Opt. Soc. Am. B 26, 1111-1118 (2009).
16. R. L. Rivest, A. Shamir, and L. Adleman, "Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Commun. ACM. 21, 120-126 (1978).
17. N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
18. C. T. Clelland, V. Risca, and C. Bancroft, "Hiding messages in DNA microdots," Nature 399, 533-534 (1999).
19. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, "Optical Techniques for Information Security," P. IEEE 97, 1128-1148 (2009).
20. R. Pappu, R. Recht, J. Taylor, and N. Gershenfeld, "Physical one-way functions," Science 297, 2026-2030 (2002).
21. M. Zhou, S. D. Chang, and C. P. Grover, "Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots," Opt. Express 12, 2925-2931 (2004).
22. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
23. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005).
24. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, "Highly coherent thermal emission obtained by plasmonic bandgap structures," Appl. Phys. Lett. 92, 081913 (2008).
25. B. D. Kong, V. N. Sokolov, K. W. Kim, and R. J. Trew, "Quasi-Coherent Thermal Emission in the Terahertz by Doped Semiconductors," IEEE Sens. J. 10, 443-450 (2010).
26. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, "Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves," Phys. Rev. B 76, 045427 (2007).
27. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, "Extraordinary coherent thermal emission from SiC due to coupled resonant cavities," J. Heat Trans.-T ASME 130, 112401 (2008).
28. B. J. Lee, L. P. Wang, and Z. M. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Opt. Express 16, 11328-11336 (2008).
29. B. J. Lee, C. J. Fu, and Z. M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett. 87, 071904 (2005).
30. B. J. Lee, and Z. M. Zhang, "Design and fabrication of planar multilayer structures with coherent thermal emission characteristics," J. Appl. Phys. 100, 063529 (2006).
31. M. Laroche, R. Carminati, and J. J. Greffet, "Coherent thermal antenna using a photonic crystal slab," Phys. Rev. Lett. 96, 123903 (2006).
32. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
33. P. Ben-Abdallah, "Thermal antenna behavior for thin-film structures," J. Opt. Soc. Am. A 21, 1368-1371 (2004).
34. K. Joulain, and A. Loizeau, "Coherent thermal emission by microstructured waveguides," J. Quant. Spectrosc. Radiat. Transfer 104, 208-216 (2007).
35. A. Battula, and S. C. Chen, "Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance," Phys. Rev. B 74, 245407 (2006).
36. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
37. S. Basu, Y.-B. Chen, and Z. M. Zhang, "Microscale radiation in thermophotovoltaic devices - A review," Int. J. Energ. Res. 31, 689-716 (2007).
38. Y.-B. Chen, and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
39. Y.-B. Chen, and K. H. Tan, "The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters," Int. J. Heat Mass Tran. 53, 5542-5551 (2010).
40. I. Celanovic, N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Appl. Phys. Lett. 92, 193101 (2008).
41. H. Sai, and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Appl. Phys. Lett. 85, 3399-3401 (2004).
42. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
43. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanos. 5, 201-213 (2008).
44. K. Fu, Y.-B. Chen, P. F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Tran. 51, 4911-4925 (2008).
45. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
46. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography (CRC, London, 1997).
47. E. Hecht, Optics (Addison-Wesley, San Francisco ; London, 2002).
48. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy," Opt. Lett. 33, 204-206 (2008).
49. M. F. Modest, Radiative heat transfer (Academic Press, Amsterdam ; London, 2003).
50. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning (Addison-Wesley, Reading, Mass., 1989).
51. S. S. Rao, Engineering optimization : theory and practice (Wiley ; Chichester : John Wiley , Hoboken, N.J., 2009).
52. T. Back, Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms (Oxford University Press, Oxford ; New York, 1996).
53. C. A. C. Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art," Comput. Method Appl. M. 191, 1245-1287 (2002).
54. J. H. Holland, Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence (University of Michigan Press, Ann Arbor, Mich., 1975).
55. Z. Michalewicz, Genetic algorithms + data structures = evolution programs (Springer, Berlin ; London, 1996).
56. S. R. M. Price K, Lampinen J A., Differential Evolution: a Practical Approach to Global optimization (Springer, New York, 2005).
57. U. K. Chakraborty, Advances in differential evolution (Springer, Berlin, 2008).
58. R. Storn, and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim. 11, 341-359 (1997).
59. F. Neri, and V. Tirronen, "Recent advances in differential evolution: a survey and experimental analysis," Artif. Intell. Rev. 33, 61-106 (2010).
60. H. Y. Fan, and J. Lampinen, "A trigonometric mutation operation to differential evolution," J. Global Optim. 27, 105-129 (2003).
61. J. Kennedy and R. C. Eberhart, "Particle swarm optimization, Proceedings of the 1995
IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, 1995.."
62. J. F. Schutte, and A. A. Groenwold, "A study of global optimization using particle swarms," J. Global Optim. 31, 93-108 (2005).
63. K. Krishnakumar, "Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization," SPIE: Intelligent Control and Adaptive Systems, 1196, Philadelphia, PA, (1989).
64. J. H. Jiang, and G. P. Nordin, "A rigorous unidirectional method for designing finite aperture diffractive optical elements," Opt. Express 7, 237-242 (2000).
65. P. Refregier, and B. Javidi, "Optical-Image Encryption Based on Input Plane and Fourier Plane Random Encoding," Opt. Lett. 20, 767-769 (1995).
66. B. Javidi, and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000).
67. W. Chen, X. D. Chen, and C. J. R. Sheppard, "Optical image encryption based on diffractive imaging," Opt. Lett. 35, 3817-3819 (2010).
68. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
69. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Organ pipe radiant modes of periodic micromachined silicon surfaces," Nature 324, 549-551 (1986).
70. Y.-B. Chen, J.-S. Chen, and P.-f. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17, 9789-9803 (2009).
71. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
72. Y.-B. Chen, Z. M. Zhang, and P. J. Timans, "Radiative properties of patterned wafers with nanoscale linewidth," J Heat Trans-T ASME 129, 79-90 (2007).
73. Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, "A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces," Rev. Sci. Instrum. 74, 4885-4892 (2003).
74. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
75. R. Katayama, and Y. Komatsu, "Blue/DVD/CD compatible optical head," Appl. Optics 47, 4045-4054 (2008).
76. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005).
77. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slit arrays," J. Heat Trans.-T ASME 130, 082404-082401/082408 (2008).
78. A. Hessel, and A. A. Oliner, "A New Theory of Woods Anomalies on Optical Gratings," Appl. Optics. 4, 1275-& (1965).
79. D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007).
80. E. G. Loewen, and E. Popov, Diffraction gratings and applications (M. Dekker, New York, 1997).
81. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego ; London, 1998).
82. H. C. Cheng, and Y. L. Lo, "Arbitrary strain distribution measurement using a genetic algorithm approach and two fiber Bragg grating intensity spectra," Opt. Commun. 239, 323-332 (2004).
83. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, "Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field," Surf. Sci. Rep. 57, 59-112 (2005).
84. E. L. Albuquerque, and M. G. Cottam, Polaritons in periodic and quasiperiodic structures (Elsevier, Amsterdam ; Oxford, 2004).
85. R. Carminati, and J. J. Greffet, "Near-field effects in spatial coherence of thermal sources," Phys. Rev. Lett. 82, 1660-1663 (1999).
86. T. Setala, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: Effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).
87. L. P. Wang, and Z. M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," J. Opt. Soc. Am. B 27, 2595-2604 (2010).
88. L. P. Wang, and Z. M. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Appl. Phys. Lett. 95, 111904 (2009).
89. A. W. Bett, and O. V. Sulima, "GaSb photovoltaic cells for applications in TPV generators," Semicond. Sci. Tech. 18, S184-S190 (2003).
校內:2016-08-15公開