簡易檢索 / 詳目顯示

研究生: 周君豪
Chou, Chun-Hao
論文名稱: 超高性能混凝土細長構件之反覆軸向行為
Cyclic axial behavior of ultra-high performance concrete slender members
指導教授: 洪崇展
Hung, Chung-Chan
共同指導教授: 蕭博謙
Hsiao, Po-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 139
中文關鍵詞: 超高性能混凝土細長構件箍筋間距
外文關鍵詞: Ultra-High Performance Fiber Reinforced Concrete (UHPC), Slender members, Stirrup spacing
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今存在斜撐的結構物,大多數為鋼斜撐,而混凝土抗壓強度高與變形小,若將混凝土斜撐應用在結構物上,當使用合適的斜撐配置時,可減少整體結構側向位移,增加結構勁度,強化結構物能力。超高性能混凝土具有超高之軸壓與軸拉強度,並具有良好之裂縫控制能力,適合使用於耐震構材。本研究調查超高性能混凝土細長構件於反覆軸向荷載下之行為。共設計並測試四支構件,實驗參數包含混凝土類型與箍筋間距。測試時以兩端鉸接,進行軸向靜態反覆加載,探討超高性能混凝土細長構件之軸向行為。實驗結果顯示,使用超高性能混凝土取代高強度自充填混凝土於細長構件時,可有效提升構件之極限抗壓與拉力強度,並改善混凝土之脆性破壞行為。

    Ultra-high performance concrete has ultra-high axial compression and axial tensile strength, and has good crack control capabilities, and is suitable for use in earthquake-resistant structures. This study investigates the behavior of ultra-high performance concrete slender members under cyclic axial loads. A total of four members were designed and tested, and the experimental parameters included concrete type and stirrup spacing. In the test, the two ends are hinged, and the axial static cyclic loading is carried out to explore the axial behavior of the ultra-high performance concrete slender member. Experimental results show that the use of ultra-high performance concrete instead of high-strength self-compacting concrete for slender components can effectively increase the ultimate compressive and tensile strength of the components, and improve the brittle failure behavior of concrete.

    摘要 II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 1 第二章 文獻回顧 2 2.1 高強度混凝土 2 2.2 高性能纖維混凝土 3 2.3 超高性能纖維混凝土 4 2.4 鋼筋混凝土柱 6 2.4.1 軸向強度 6 2.4.2 鋼筋混凝土柱實驗 7 2.5 超高性能纖維混凝土細長柱 8 2.6 斜撐 12 2.6.1 預力混凝土斜撐 12 2.6.2 挫屈束制斜撐應用於鋼筋混凝土構架 15 2.6.3 偏心斜撐 21 2.7 韌性指標 23 2.8 保護層剝落 25 第三章 試驗規劃與設置 27 3.1 試驗材料 27 3.1.1 高強度自充填混凝土 27 3.1.2 超高性能混凝土 27 3.1.3 鋼筋 28 3.2 試體規劃 29 3.3 混凝土細長構件設計 29 3.3.1 試體尺寸 29 3.3.2 試體命名 30 3.3.3 斷面配置 30 3.3.4 箍筋間距 31 3.3.5 試驗參數 33 3.3.6 加載方式 35 3.4 試驗儀器與設備 38 3.4.1 測試系統 38 3.4.1.1 200噸靜態制動器 38 3.4.1.2 100噸萬能試驗機 38 3.4.1.3 50噸萬能試驗機 38 3.4.2 應變量測系統 39 3.4.2.1 電阻式應變計 39 3.4.2.2 資料擷取系統 40 3.4.3 外部量測系統 41 3.4.3.1 NDI Optotrak ® Certus HD 41 3.4.3.2 LVDT拉線式位移計(Displacement Transducer) 43 3.4.4 混凝土拌合機具 43 3.5 細長構件試體製作 44 3.5.1 應變計黏貼步驟 44 3.5.2 應變計位置與編號 46 3.5.3 試體鋼筋與鋼板組立 48 3.5.4 模板組立 50 3.5.5 混凝土拌和 51 3.5.6 試體澆置 52 3.5.7 拆模與養護 54 3.5.8 兩端鋼板加勁 54 3.6 試驗流程 55 3.6.1 試驗前置作業 55 3.6.2 試體架設 56 3.6.2.1 裝設200噸靜態制動器 56 3.6.2.2 架設防挫曲構架 56 3.6.2.3 架設細長構件試體 56 3.6.3 架設量測系統 58 3.6.3.1 內部量測系統 58 3.6.3.2 外部量測系統 58 3.6.4 試驗開始與結束 60 3.7 材料試驗 60 3.7.1 圓柱抗壓試驗 60 3.7.2 混凝土拉力試驗 65 3.7.3 鋼筋拉力試驗 70 第四章 試驗結果 73 4.1 細長構件反覆載重試驗行為 73 4.1.1 試體編號 : SCC-5 73 4.1.2 試體編號 : SCC-10 78 4.1.3 試體編號 : UHPC-5 85 4.1.4 試體編號 : UHPC-10 92 第五章 綜合討論 99 5.1 軸向強度 99 5.1.1 最大軸向強度 99 5.1.2 最大軸向強度之預測方法 100 5.1.2.1 ACI 318-19 101 5.1.2.2 ACI ITG-4.3R-07 101 5.1.2.3 CSA A23.3-04 101 5.1.3 軸向強度計算結果與實驗比較 102 5.1.3.1 ACI 318-19計算結果 102 5.1.3.2 ACI ITG-4.3R-07計算結果 102 5.1.3.3 CSA A23.3-04計算結果 102 5.2 軸向應變 105 5.2.1 尖峰軸向應變 105 5.2.2 極限軸向應變 105 5.3 縱向鋼筋 107 5.4 橫向鋼筋 115 5.5 勁度 123 5.6 能量消散 127 5.7 破壞 128 5.7.1 包絡線 128 5.7.2 保護層剝落 129 5.7.3 裂縫發展數量 130 第六章 結論與建議 132 6.1 結論 132 6.2 建議134 參考文獻 136

    [1]洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
    [2]潘冠宇, 吳安傑, 李昭賢, & 蔡克銓. (2015). 挫屈束制支撐鋼框補強鋼筋混凝土構架之研究. Structural Engineering, 30(4), 41-64.
    [3]ACI (American Concrete Institute). (2014). Building code requirements for reinforced concrete. ACI 318-14.
    [4]ACI (American Concrete Institute). (2019). Building code requirements for reinforced concrete. ACI 318-19.
    [5]ACI Innovation Task Group 4(2007)Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),American Concrete Institute
    [6]American Concrete Institute (ACI). (2013). Guide for testing reinforced concrete structural elements under slowly applied simulated seismic loads (ACI 374.2 R13).
    [7]ASTM. (1997). Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading). C-1018.
    [8]Canadian Standards Association,”Design of Concrete STructures,”CSA A23.3-04,2004
    [9]Canadian Standards Association. (2004). Design of concrete structures. Mississauga, Ont.: Canadian Standards Association.
    [10]Carrasquillo, R. L., Nilson, A. H., & Slate, F. O. (1981, May). Microcracking and behavior of high strength concrete subject to short-term loading. In Journal Proceedings (Vol. 78, No. 3, pp. 179-186).
    [11]Carrasquillo, R. L., Nilson, A. H., & Slate, F. O. (1981, May). Properties of High Strength Concrete Subject to Short-Term Loads. In Journal Proceedings (Vol. 78, No. 3, pp. 171-178).
    [12]Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of materials in civil engineering, 4(4), 415-429
    [13]Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. Journal of The American Concrete Institute, 82(4), 475-483.
    [14]Foster, S. J. (2001). On behavior of high-strength concrete columns: cover spalling, steel fibers, and ductility. Structural Journal, 98(4), 583-589.
    [15]Foster, S. J., & Attard, M. M. (2001). Strength and ductility of fiber-reinforced high-strength concrete columns. Journal of Structural Engineering, 127(1), 28-34.
    [16]Hsiao, P. C., Hayashi, K., Inamasu, H., Luo, Y. B., & Nakashima, M. (2016). Development and testing of naturally buckling steel braces. Journal of Structural Engineering, 142(1), 04015077.
    [17]Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal,
    [18]Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
    [19]Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
    [20]Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
    [21]Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
    [22]Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    [23]Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    [24]Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
    [25]Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.107(6).
    [26]Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
    [27]Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    [28]Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [29]Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    [30]Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
    [31]Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    [32]Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    [33]Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
    [34]Kono, S., & Katayama, T. (2009). Seismic retrofit of reinforced concrete building structures with prestressed braces. Journal of Advanced Concrete Technology, 7(3), 337-345.
    [35]Nataraja, M. C., Dhang, N., & Gupta, A. P. (1999). Stress–strain curves for steel-fiber reinforced concrete under compression. Cement and concrete composites, 21(5-6), 383-390.
    [36]Resplendino, J., & Toulemonde, F. (2013). Designing and Building with UHPFRC. John Wiley & Sons.
    [37]Sharma, U. K., & Bhargava, P. (2005). Behavior of confined high strength concrete columns under axial compression. Journal of Advanced Concrete Technology, 3(2), 267-281.
    [38]Wille K, El-Tawil S, Naaman AE. (2014) Properties of strain hardening ultra high performance fiber reinforced concrete (UHPFRC) under direct tensile loading. Cement & Concrete Composites.48:53-66.
    [39]Zhang, J., Wu, B., Mei, Y., & Shing, P. B. (2015). Experimental and analytical studies on a reinforced concrete frame retrofitted with buckling-restrained brace and steel caging. Advances in Structural Engineering, 18(2), 155-171.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE