簡易檢索 / 詳目顯示

研究生: 褚柏榕
Chue, Bo-Rong
論文名稱: 雙折射率光纖光柵之原理及應用設計
The theory and the application design of fiber Bragg gating in high-birefringence optical fiber
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 68
中文關鍵詞: 偏振分光器雙折射率光纖布拉格光纖光柵旋轉角度感測器
外文關鍵詞: Torsion sensor., Polarization beam splitter, Fiber Bragg grating, High-birefringence optical fiber
相關次數: 點閱:138下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討雙折射率光纖光柵的原理及現象。雙折射率光纖光柵反射兩個布拉格波長的光訊號,而且這兩個波長的光擁有互相垂直的偏振狀態。我們發表一種全光纖式的偏振分光器,他主要是由雙折射率光纖光柵及光循環器所組成。當入射光波長為雙折射率光纖光柵的布拉格波長,他將會被分為相垂直的兩種偏振光,並且分別由穿透端及反射端輸出。光纖光柵的反射率及雙折射率光纖在兩主軸的折射率差異將是決定此偏振分光器的鑑別率最關鍵的參數。電阻式布拉格波長調整裝置及寬反射波長的布拉格光纖光柵都可以使這種偏振分光器的應用波長範圍更寬。雙折射率光纖光柵亦可應用為旋轉角度感測器。當進入線偏振片之前的雙折射率光纖被旋轉的時候,經過線偏振片而在頻譜分析儀所觀測到在兩個布拉格波長的能量分佈將隨之改變。根據分佈在這兩個布拉格波長的能量比例,我們可以知道待感測區的雙折射率光纖被旋轉的角度。同時我們也提出反射式旋轉角度感測器及其多功架構。

    In this thesis, we discuss the fiber Bragg grating in high-birefringence optical fiber. This fiber Bragg grating in high-birefringence optical fiber reflects light in two Bragg wavelengths and these two peaks have the orthogonal polarizations to each other. An in-line fiber polarization beam splitter based on fiber Bragg grating in high-birefringence optical fiber and circulator is proposed. The light in Bragg wavelengths were separated into two polarizations in reflected and transmitted ends. The reflectivity of fiber Bragg grating and birefringence of high-birefringence optical fiber are key points to determine the extinction ratio of polarization beam splitter. Electrically wavelength tunable device and chirp fiber Bragg grating could make the wider work range of polarization beam splitter. Fiber Bragg grating in high-birefringence optical fiber also designed as a torsion sensor. When the high-birefringence optical fiber was twisted before passing into linear polarizer, the polarization of two Bragg wavelengths also varied. Therefore, the twist angle could be determined by the ratio of intensities from two reflecting Bragg wavelengths. We also suggested the reflected-type torsion sensor and the multiplexing system.

    Abstract Ⅰ Acknowledgements Ⅱ Table of Contents Ⅳ List of Figures Ⅵ Chapter 1 Introduction 1.1 The Motivations and Destinations of the Research 1 1.2 History Review of In-Line Polarization Beam Splitter (PBS) 2 1.3 History Review of Torsion Sensor 3 1.4 Overview of Chapters 4 Chapter 2 Fiber Bragg Grating (FBG) in High-Birefringence (Hi-Bi) Optical Fiber 2.1 Basic Theory of Hi-Bi FBG 10 2.2 Fabrication of Hi-Bi FBG and Theoretical Simulation 12 2.3 Various Applications of Hi-Bi FBG 14 2.3.1 Optical Switch 14 2.3.2 In-Line Fiber PBS 15 2.3.3 Torsion Sensor 15 Chapter 3 In-Line Fiber PBS 3.1 The Theory of In-Line Fiber PBS 20 3.2 The Experiment of In-Line Fiber PBS 24 3.3 Experimental Results and Discussion 25 3.4 Metal Coating for the Tuning of Bragg Wavelength 27 3.5 Conclusions and Suggestions 29 Chapter 4 Torsion Sensor Based on Hi-Bi FBG 4.1 The Theory of Torsion Sensor Based on Hi-Bi FBG 41 4.1.1 Jones Matrix of the Twisted Hi-Bi FBG 42 4.1.2 Results of Simulation 45 4.2 The Experiment of Torsion Sensor Based on Hi-Bi FBG 47 4.3 Experimental Results and Discussion 49 4.4 Conclusions and Suggestions 50 Chapter 5 Conclusions and Future Works 5.1 Conclusions and Future Works of In-Line Fiber PBS 58 5.2 Conclusions and Future Works of Torsion Sensor Based on Hi-Bi FBG 59 Bibliography 62 Appendix Specifications for the OSA 66 Autobiography 68

    Chiriac, H., Marinescu, C. S., and Marinescu, M., “New sensor based on FeBSi amorphous glass covered wire for torsion oscillations recording,” J. Magnetism and Magnetic Materials, pp. 367-368, 1999.

    Claus, R. O., Wang, A., and Vries, M., “In-line fiber polarizer,” 1998.

    Davis, J. A., Adachi, J., Fernández-Pousa, C. R., and Moreno, I., “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. Vol. 26, pp. 587-589, 2001.

    Davis, J. A., Allison, D. B., D’Nelly, K. G., Wilson, M. L., and Moreno I., “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng., Vol. 38, pp. 705-709, 1999.

    Diez, A., Andres, M. V., and Culverhouse, D. O., “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett., Vol. 10, pp. 833-835, 1998.

    Erdogan, T., “Fiber grating spectra,” J. Lightwave Tech., Vol. 15, pp. 1277-1294, 1997.

    Hill, K. O. and Gerald, M., “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol., Vol. 15, No. 8, pp. 1263-1276, 1997.

    Hill, K. O., Fujii, Y., Johnson, D. C., and Kawasaki, B. S., “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett., Vol. 32, pp. 647–649, 1978.

    Kurkov, A. S., Douay, M., Duhem, O., Leleu, B., Bayon, J. F., and Rivoallan, L., “Long-period fibre grating as a wavelength selective polarization element,” Electron. Lett., Vol. 33, pp. 616-617, 1997.

    Limberger, H. G., Ky, N. H., Costantini, D. M., Salathé, R. P., Muller, C. A. P., and Fox, G. R., “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett., Vol. 10, pp. 361-363, 1998.

    Lin, C. Y., Wang, L. A. and Chern, G. W., “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Tech., Vol. 19, pp. 1159-1168, 2001.

    Lo, Y. L., “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett., Vol. 10, pp. 1003-1005, 1998.

    Ma, S. P., and Tseng, S. M., “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol., Vol. 15, pp. 1554-1558, 1997.

    Noda, J., Okamoto, K., and Sasaki, Y., “Polarization-maintaining fiber and their application,” J. Lightwave Tech., Vol. LT-4, pp. 1071-1089, 1986.

    Ortega, B., Dong, L., Liu, W. F., J. P. de Sandro, Reekie, L., Tsypina, S. I., Bagratashvili, V. N., Laming, and R. I., “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett., Vol. 9, pp. 1370-1372, 1997.

    Pain, F., Coquillé, R., Vinouze, B., Wolffer, N., and Gravey, P., “Comparison of twisted and parallel nematic liquid crystal polarisation controllers. Application to a 4×4 free space optical switch at 1.5 μm,” Optics communications, Vol. 139, pp. 199-204, 1997

    Rogers, J. A., Kuo, P., Ahuja, A., Eggleton, B. J., and Jackman, R. J., “Characteristics of heat flow in optical fiber devices that use integrated thin-film heaters,” App. Opt. Vol. 39, pp. 5109-5116, 2000.

    Rose, B., Imam, H., Hanson, S. G. and Yura, H. T., “A laser speckle sensor to measure the distribution of static torsion angles of twisted targets,” Meas. Sci. Technol., Vol. 9, pp. 42–49, 1998.

    Sakamoto, A., Sasaki, H., Tanaka, D., Matsumoto, R., Okude, S., Nishide, K., and Wada, A., “Low loss all-PANDA-fiber polarization beam splitter/combiner,” 14th Int. Conf. On O.F.S., pp. 612-615, 2000.

    Tian, X. G. and Tao, X. M., “Torsion measurement using fiber Bragg grating sensors,” Exp. Mechan. Vol. 41, pp. 248-253, 2001.

    Ueda, M., Yamaguchi, T., Chen, J., Asada, K., Taniguchi, K., and Suga, H., “An optical system for monitoring torsion in a power transmission shaft in realtime,” Optics and Lasers in Engineering, Vol. 31, pp. 199-205, 1999.

    Ugural, A. C., Chapter 4 in Mechanics of Materials, McGraw-Hill, 1993.

    Wang, L. A., Lin, C. Y. and Chern, G. W., “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol., Vol. 12, pp. 793–799, 2001.

    Yariv, A. and Yeh, P., Chapter 5 in Optical Waves in Crystals, Wiley, New York, 1984.

    Zhang, W., Dong, X., Kai, G., Liu, Z., Yuan, S., and Zhao, Q., “Novel fiber Bragg grating- type angle displacement sensor,” in Proc. OFS’2000, 14th, pp. 90-93, 2001.

    下載圖示 校內:2003-07-08公開
    校外:2003-07-08公開
    QR CODE