| 研究生: |
劉柏均 Liu, Po-Chun |
|---|---|
| 論文名稱: |
新穎雙離子共聚高分子激活之表面增強拉曼散射基板於體外人類血清中之孔雀綠偵測 Novel Zwitterionic Copolymers Activating SERS Substrates for in vitro Detection of Malachite Green in Human Blood Serum |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 雙離子共聚高分子 、抗生物沾黏 、人類血清 、表面增強拉曼散射 、孔雀綠 |
| 外文關鍵詞: | zwitterionic copolymers, anti-biofouling, human blood serum, surface-enhanced Raman scattering (SERS), malachite green |
| 相關次數: | 點閱:106 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在複雜生物環境中,生物分子會貼附在不具抗生物沾黏能力的材料表面,若生物分子貼附於表面增強拉曼散射(surface-enhanced Raman scattering, SERS)基板上,則會使SERS基板的熱點區域(hot spot zone)失去活性,因此本研究使用雙離子共聚高分子作為抗生物沾黏層以保護SERS基板的熱點區域,並於人類血清中進行孔雀綠分子的拉曼訊號量測。
本研究包含兩個部分,第一部分合成聚(甲基丙烯酸縮水甘油酯-甲基丙烯酸硫代甜菜鹼)雙離子共聚高分子、銀奈米立方體粒子與製備銀基板,並組裝成雙離子共聚高分子激活之SERS基板,接著進行相關的性質分析。由紫外光/可見光光譜分析得知以不同高分子濃度接枝後,會使SERS基板的表面電漿共振波長產生位移,進而影響SERS基板的增顯能力。由酵素連結免疫吸附測試可知以雙離子共聚高分子修飾後的SERS基板,其Fibrinogen蛋白質相對吸附量皆明顯降低。
第二部分使用已製備的雙離子共聚高分子激活之SERS基板在視為無生物分子干擾環境的磷酸鹽緩衝生理食鹽水(phosphate buffered saline, PBS)以及複雜生物分子環境的人類血清(platelet-rich plasma, PRP)中進行孔雀綠的拉曼訊號偵測,並以未修飾之SERS基板作為對照組。藉由分析PBS環境中孔雀綠拉曼強度對測量時間的趨勢可知高分子層有助於孔雀綠分子的吸附,於是隨著時間的增加其拉曼強度也隨之增強,等到高分子層中的孔雀綠分子達飽和吸附時其拉曼強度開始維持定值;由PRP環境中的實驗結果可知未修飾之SERS基板無法獲得明顯的孔雀綠拉曼訊號,然而以雙離子共聚高分子激活之SERS基板因為有抗生物沾黏層的保護,於是在持續測量2小時內皆可獲得穩定的孔雀綠拉曼訊號,其中5 mg/ml之SERS基板顯現出較穩定的性能。
本研究成功地使用雙離子共聚高分子激活在人類血清中的SERS基板,並克服蛋白質與血小板等生物分子貼附現象對於SERS基板增顯能力的影響,達成於體外人類血清中孔雀綠之拉曼訊號偵測。
Surface-enhanced Raman scattering (SERS) substrates with hot spots generating from large-scale massive nanogaps between silver nanocubes and the silver film via 1, 2-ethanedithiol monolayer as a linkage are fabricated. In complex biological media such as human blood serum, Raman signals can be greatly interfered by biological substance adsorption which impedes analyte molecules and generates background noise. Therefore, the hydrophilic zwitterionic copolymers, poly(glycidyl methacrylate)-r-poly(sulfobetaine methacrylate), PGMA-r-PSBMA is synthesized and grafted-onto the as-prepared SERS substrates. The sulfobetaine headgroup of zwitterionic copolymers can bind water molecules, and thus resist biological adsorption. The zwitterionic copolymers activating SERS substrates are used to detect the Raman signals of malachite green (MG) in phosphate buffered saline (PBS) and human blood serum (platelet-rich plasma, PRP) solution, compared with the unmodified SERS substrates. UV-Vis analysis shows that the zwitterionic copolymers can make the surface plasmon resonance (SPR) wavelength of the SERS substrates shift. ELISA analysis shows that zwitterionic copolymers can effectively reduce relative fibrinogen adsorption. For Raman detection of MG in PBS solution, its intensity increases with time and then reaches stable because MG molecules adsorbed on the zwitterionic copolymer layer gradually become saturated. For Raman detection of MG in PRP, the SERS substrates without anti-fouling property fail to detect MG Raman signals. By grafting zwitterionic copolymer layer, the SERS substrates can resist the nonspecific adsorption of biomolecules of PRP and detect MG Raman signals for at least 2 hours, showing excellent detection ability and better life time in complex biological media.
[1] G. S. Georgiev, E. B. Kamenska, E. D. Vassileva, I. P. Kamenova, V. T. Georgieva, S. B. Iliev, et al., "Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions," Biomacromolecules, vol. 7, pp. 1329-1334, 2006.
[2] S. J. Singer, and G. L. Nicolson, "The fluid mosaic model of the structure of cell membranes," Science, vol. 175, pp. 720-731, 1972.
[3] A. L. Lewis, "Phosphorylcholine-based polymers and their use in the prevention of biofouling," Colloids and Surfaces B: Biointerfaces, vol. 18, pp. 261-275, 2000.
[4] R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, and G. M. Whitesides, "Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer," Langmuir, vol. 17, pp. 2841-2850, 2001.
[5] Y. Kadoma, N. Nakabayashi, E. Masuhara, and J. Yamauchi, "Synthesis and hemolysis test of polymer containing phosphorylcholine groups," Kobunshi Ronbunshu, vol. 35, pp. 423-427, 1978.
[6] K. Ishihara, T. Ueda, and N. Nakabayashi, "Preparation of phospholipid polymers and their properties as polymer hydrogel membranes," Polym Journal, vol. 22, pp. 355-360, 1990.
[7] W. Feng, S. Zhu, K. Ishihara, and J. L. Brash, "Adsorption of fibrinogen and lysozyme on silicon grafted with poly (2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization," Langmuir, vol. 21, pp. 5980-5987, 2005.
[8] Y. Chang, S. Chen, Z. Zhang, and S. Jiang, "Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines," Langmuir, vol. 22, pp. 2222-2226, 2006.
[9] Y. Chang, S. C. Liao, A. Higuchi, R. C. Ruaan, C. W. Chu, and W. Y. Chen, "A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion," Langmuir, vol. 24, pp. 5453-5458, 2008.
[10] Z. Zhang, T. Chao, S. Chen, and S. Jiang, "Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides," Langmuir, vol. 22, pp. 10072-10077, 2006.
[11] R. S. Kane, P. Deschatelets, and G. M. Whitesides, "Kosmotropes form the basis of protein-resistant surfaces," Langmuir, vol. 19, pp. 2388-2391, 2003.
[12] Z. Zhang, S. Chen, and S. Jiang, "Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization," Biomacromolecules, vol. 7, pp. 3311-3315, 2006.
[13] Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue, and S. Jiang, "Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects," Biomacromolecules, vol. 9, pp. 2686-2692, 2008.
[14] 薛敬和, 生命科學與工程, 2010.
[15] A. Mochizuki, T. Ogawa, K. Okamoto, T. Nakatani, and Y. Nitta, "Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility," Materials Science and Engineering: C, vol. 31, pp. 567-573, 2011.
[16] OpenStax, "An overview of blood," 2015.
[17] E. A. Vogler, "Structure and reactivity of water at biomaterial surfaces," Advances in Colloid and Interface Science, vol. 74, pp. 69-117, 1998.
[18] T. Fischer, and H. Hess, "Materials chemistry challenges in the design of hybrid bionanodevices: supporting protein function within artificial environments," Journal of Materials Chemistry, vol. 17, pp. 943-951, 2007.
[19] C. Johnson, P. Wu, and A. Lenhoff, "Electrostatic and Van der Waals contributions to protein adsorption: 2. Modeling of ordered arrays," Langmuir, vol. 10, pp. 3705-3713, 1994.
[20] R. L. Baldwin, "Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding," Proceedings of the National Academy of Sciences, vol. 111, pp. 13052-13056, 2014.
[21] R. J. Hunter, Foundations of Colloid Science, vol. I: Oxford Science, 1989.
[22] L. Vroman, "The importance of surfaces in contact phase reactions," Seminars in Thrombosis and Hemostasis, vol. 13, pp. 79-85, 1987.
[23] M. B. Gorbet, and M. V. Sefton, "Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes," Biomaterials, vol. 25, pp. 5681-5703, 2004.
[24] S. R. Hanson, and L. Harker, "Blood coagulation and blood-materials interactions," Biomaterials Science: An introduction to materials in medicine, pp. 193-200, 1996.
[25] D. Blockmans, H. Deckmyn, and J. Vermylen, "Platelet actuation," Blood Reviews, vol. 9, pp. 143-156, 1995.
[26] C. V. Raman, "The Raman effect-inelastic insight," Nature, vol. 121, pp. 501-502, 1928.
[27] M. Fleischmann, P. J. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
[28] D. L. Jeanmaire, and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977.
[29] M. G. Albrecht, and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, pp. 5215-5217, 1977.
[30] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, "Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions," The Journal of Chemical Physics, vol. 84, pp. 4174-4180, 1986.
[31] M. Kerker, D. S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata," Applied Optics, vol. 19, pp. 4159-4174, 1980.
[32] X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, "Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy," Journal of the American Chemical Society, vol. 127, pp. 4484-4489, 2005.
[33] P. H. Aoki, L. N. Furini, P. Alessio, A. E. Aliaga, and C. J. Constantino, "Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs," Reviews in Analytical Chemistry, vol. 32, pp. 55-76, 2013.
[34] Y. C. Cao, R. Jin, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science, vol. 297, pp. 1536-1540, 2002.
[35] D. Graham, and K. Faulds, "Quantitative SERRS for DNA sequence analysis," Chemical Society Reviews, vol. 37, pp. 1042-1051, 2008.
[36] A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, "Surface-enhanced Raman spectroscopy of DNA," Journal of the American Chemical Society, vol. 130, pp. 5523-5529, 2008.
[37] X. X. Han, B. Zhao, and Y. Ozaki, "Surface-enhanced Raman scattering for protein detection," Analytical and Bioanalytical Chemistry, vol. 394, pp. 1719-1727, 2009.
[38] J. Xu, L. Zhang, H. Gong, J. Homola, and Q. Yu, "Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms," Small, vol. 7, pp. 371-376, 2011.
[39] R. M. Jarvis, and R. Goodacre, "Characterisation and identification of bacteria using SERS," Chemical Society Reviews, vol. 37, pp. 931-936, 2008.
[40] J. Xu, J. W. Turner, M. Idso, S. V. Biryukov, L. Rognstad, H. Gong, et al., "In situ strain-level detection and identification of Vibrio parahaemolyticus using surface-enhanced Raman spectroscopy," Analytical Chemistry, vol. 85, pp. 2630-2637, 2013.
[41] M. Vendrell, K. K. Maiti, K. Dhaliwal, and Y. T. Chang, "Surface-enhanced Raman scattering in cancer detection and imaging," Trends in Biotechnology, vol. 31, pp. 249-257, 2013.
[42] K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, et al., "Recent progress in SERS biosensing," Physical Chemistry Chemical Physics, vol. 13, pp. 11551-11567, 2011.
[43] F. Sun, J. R. Ella-Menye, D. D. Galvan, T. Bai, H. C. Hung, Y. N. Chou, et al., "Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions," ACS Nano, vol. 9, pp. 2668-2676, 2015.
[44] J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, et al., "Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping," ACS Nano, vol. 7, pp. 5350-5359, 2013.
[45] L. He, E. Lamont, B. Veeregowda, S. Sreevatsan, C. L. Haynes, F. Diez-Gonzalez, et al., "Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods," Chemical Science, vol. 2, pp. 1579-1582, 2011.
[46] K. W. Kho, U. Dinish, A. Kumar, and M. Olivo, "Frequency shifts in SERS for biosensing," ACS Nano, vol. 6, pp. 4892-4902, 2012.
[47] N. Guarrotxena, and G. C. Bazan, "Antitags: SERS‐Encoded Nanoparticle Assemblies that Enable Single‐Spot Multiplex Protein Detection," Advanced Materials, vol. 26, pp. 1941-1946, 2014.
[48] L. Guerrini, E. Pazos, C. Penas, M. E. Vázquez, J. L. Mascareñas, and R. A. Alvarez-Puebla, "Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts," Journal of the American Chemical Society, vol. 135, pp. 10314-10317, 2013.
[49] F. Sun, T. Bai, L. Zhang, J. R. Ella-Menye, S. Liu, A. K. Nowinski, et al., "Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy," Analytical Chemistry, vol. 86, pp. 2387-2394, 2014.
[50] F. Wang, R. G. Widejko, Z. Yang, K. T. Nguyen, H. Chen, L. P. Fernando, et al., "Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles," Analytical Chemistry, vol. 84, pp. 8013-8019, 2012.
[51] Y. N. Chou, T. C. Wen, and Y. Chang, "Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces," Acta Biomaterialia, 2016.
[52] M. Rycenga, P. H. Camargo, W. Li, C. H. Moran, and Y. Xia, "Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time," The Journal of Physical Chemistry Letters, vol. 1, pp. 696-703, 2010.
[53] S. Schlücker, "Surface‐enhanced Raman spectroscopy: Concepts and chemical applications," Angewandte Chemie International Edition, vol. 53, pp. 4756-4795, 2014.
[54] Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, "Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor," Chemistry-A European Journal, vol. 16, pp. 10234-10239, 2010.
[55] S. C. Cheng, and T. C. Wen, "Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1, 2-ethanedithiol monolayer as linkage and ultra-thin spacer," Materials Chemistry and Physics, vol. 143, pp. 1331-1337, 2014.
[56] I. Ramasamy, "Inherited bleeding disorders: disorders of platelet adhesion and aggregation," Critical Reviews in Oncology/hematology, vol. 49, pp. 1-35, 2004.
[57] N. Cheng, A. A. Brown, O. Azzaroni, and W. T. Huck, "Thickness-dependent properties of polyzwitterionic brushes," Macromolecules, vol. 41, pp. 6317-6321, 2008.
[58] E. Z. Tan, P. G. Yin, T. t. You, H. Wang, and L. Guo, "Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection," ACS Applied Materials & Interfaces, vol. 4, pp. 3432-3437, 2012.
[59] K. Sivashanmugan, J. D. Liao, B. H. Liu, and C. K. Yao, "Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution," Analytica Chimica Acta, vol. 800, pp. 56-64, 2013.