簡易檢索 / 詳目顯示

研究生: 洪仁傑
Hung, Ren-Jie
論文名稱: 有限時間熱力學之內燃機引擎最大功率分析
Maximum Power Output Analysis of Internal Combustion Heat Engine with Finite-Time Thermodynamics
指導教授: 陳朝光
Chen, Cha’o-Kuang
楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 有限時間熱力學內燃循環基因演算法最大功率分析
外文關鍵詞: Finite-time thermodynamics, Internal combustion heat engine, Genetic algorithm, Maximum power output analysis
相關次數: 點閱:171下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限時間熱力學之觀點來分析內燃機循環,討論的內燃機包括奧圖循環以及狄賽爾循環,修正一般古典熱力學為了簡化問題所做的假設,使模擬結果更為貼近實際熱機情況。在分析過程中考慮了多重的不可逆性,包含熱儲與系統間的有限熱傳遞率、工作流體與汽缸壁面及活塞之間的熱傳損失、活塞與汽缸壁面間的摩擦損失等。
    以往關於內燃循環的研究中通常都採用空氣標準循環的假設,亦即工作流體為空氣且比熱假設為定值,但此假設明顯地與實際熱機情形不符。因此,在本文中工作流體採用混合氣體的觀念來分析,使之更貼近實際熱機運轉的情況。另外,由於熱機運行的溫度範圍極大,因此在分析時工作流體的等壓比熱與等容比熱皆採用以溫度為函數的假設。
    最後定義熱機的輸出功率為目標函數並求取最大值,藉由調整壓縮比、空氣燃料質量比等參數,利用基因演算法找出最佳化的熱機輸出功率以及熱效率,並得到熱機在該情況下的操作參數。

    In this study, the finite-time thermodynamics method has been utilized to analyze internal combustion heat engine, including Otto cycle and Diesel cycle, to modify some simply assumptions of classical thermodynamics, making the simulation results closer to the actual situation of heat engine. Multi-irreversibilities was considered in this study, such as finite rate heat transfer, heat leak between working fluid and cylinder wall and piston, friction loss between piston and cylinder wall, etc.
    In the past studies, researchers often used air-standard power cycle to analyze internal combustion heat engine, which means the air was used as the working fluid and the specific heat is assumed to be constant, but this assumption was clearly incompatible with the actual conditions. Therefore, we considered the working fluid as mixture gas in this article to make the simulation results closer to the actual situation of heat engine. Since the operating temperature range of the heat engine is very large, the constant pressure specific heat and constant capacity specific heat is assumed to be function of temperature.
    Finally, we defined the power output as the objective function to find the extreme value by adjusting the compression ratio, air-fuel mass ratio and other parameters, and using genetic algorithms to find out the maximum power output and the thermal efficiency, and get the operating parameters in that case.

    目錄 中文摘要………………………………………………………………....I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 圖目錄…………………………………………………………………..VI 符號說明……………………………………………………………......IX 第一章 緒論……………………………………………………………..1 1-1 研究動機與背景…………………………………………...1 1-2 文獻回顧…………………………………………………...4 1-3 本文架構…………………………………………………...7 第二章 不可逆奧圖熱機之最大功率分析……………………………..8 2-1 理論模型…………………………………………………...8 2-2 數值分析………………………………………………….14 2-3 最佳化結果與討論……………………………………….25 第三章 不可逆狄賽爾熱機之最大功率分析…………………………30 3-1 理論模型………………………………………………….30 3-2 數值分析………………………………………………….35 3-3 最佳化結果與討論……………………………………….43 第四章 基因演算法……………………………………………………48 4-1 基因演算法的發展……………………………………….48 4-2 基因演算法的生物學基礎……………………………….50 4-3 基因演算法的基本特徵………………………………….50 4-4 適應度…………………………………………………….52 4-5 基因演算法的操作算子………………………………….54 4-6 基因演算法的運算流程………………………………….59 第五章 反應曲面法……………………………………………………63 5-1 反應曲面法的概念……………………………………….63 5-2 反應曲面法的設計步驟………………………………….63 5-3 迴歸分析………………………………………………….66 第六章 結論與未來展望………………………………………………71 6-1 結論……………………………………………………….71 6-2 未來的研究發展方向與建議…………………………….72 參考文獻………………………………………………………………..73 自述……………………………………………………………………..77

    Ait-Ali, M.A., “Maximum Power and Thermal Efficiency of an Irreversible Power Cycle,” Journal of Applied Physics, Vol. 78, No. 7, pp. 4314-4318, 1995.
    Andresen B., Salamon, P. and Berry, R. S., “Thermodynamics of Finite Time: Extremals for Imperfect Heat Engines”, Journal of Chemical Physics, Vol. 66, No. 4, pp. 1571-157, 1977.
    Andresen B., Salamon, P. and Berry, R.s., “Thermodynamics in Finite Time”, Physics Today, Vol. 37, No. 9, pp. 62-70, 1984.
    Angulo-Brown, F., “An Ecological Optimization Criterion for Finite-Time Heat Engines,” Journal of Applied Physics, Vol. 69, No. 11, pp. 7465-7469, 1991.
    Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants,” International Journal of Heat and Mass Transfer, Vol. 31, No. 6, pp. 1211-1219, 1988.
    Bejan, A., “Power and Refrigeration Plants for Minimum Heat Exchanger Inventory,” ASME Journal of Energy Resources Technology, Vol. 115, No. 2, pp. 148-150, 1993.
    Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants-II. The Optimal Allocation of Heat Exchange Equipment” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 433-444, 1995.
    Chen, L., Wu, C., Sun, F. and Cao, S., “Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycles,” Energy Convers. Mgmt, Vol. 39, No. 7, pp. 643–648, 1998.
    Chen, L., Zheng, T., Sun, F. and Wu, C., “The power and efficiency characteristics for an irreversible Otto cycle,” International Journal of Ambient Energy, Vol. 24, No. 4, pp. 195-200, 2003.
    Curzon, F.L. and Ahlburn , B. , “Efficiency of Carnot Engine at Maximum Power Output,” American Journal of Physics, Vol. 43, No. 1, pp. 22-44, 1975.
    De Vos, A., “Efficiency of Some Heat Engines at Maximum-Power Conditions,” American Journal of Physics, Vol. 53, No. 6, pp. 570-573, 1985.
    El-Wakil, M.M. , Nuclear Power Engineering, pp. 162-165 , Mcgraw-Hill, New York, 1962.
    Ge, Y., Chen, L., Sun, F., Wu, C., “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specificheats for the working fluid,” International Journal of Thermal Sciences, Vol. 44, No. 5, pp. 6-11, 2005.
    Ge, Y., Chen, L., Sun, F., “Finite-time thermodynamic modeling and analysis of an irreversible Otto-cycle,” Applied Energy, Vol. 85, pp. 618-624, 2007.
    Ge, Y., Chen, L., Sun, F., “Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle,” Mathematical and Computer Modelling, Vol 50, pp.101-108, 2009.
    Gordon, J.M., “Generalized Power versus Efficiency Characteristics of Heat Engines: the Thermoelectric Generator as an Instructive Illustration,” American Journal of Physics, Vol. 59, No. 6, pp. 551-555, 1991.
    Gordon, J.M. and Huleihil, M., “General Performance Characteristics of Real Heat Engine,” Journal of Applied Physics, Vol. 72, No. 3, pp. 829-837, 1992.
    Ibrahim, O.M. ,Klein, S.A. ,and Mitchell, J.W., “Optimum Power Cycles for Specified Boundary Conditions,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 4, pp. 514-521, 1991.
    Moukalled, F., Nuwayhid, R.Y. and Nouehed, N., “The Efficiency of Endoreversible Heat Engines with Heat Leak,” International Journal of Energy Research, Vol. 19, No. 5, pp. 377-389, 1995.
    Novikov, Ι.I., “The Efficiency of Atomic Power Stations,” Journal of Nuclear Energy II, Vol. 7, pp. 125-128, 1958.
    Rubin, M.H., Ondrechen, M.J. and Band, Y.B.,“The Generalized Carnot Cycle a Working Fluid Operating in Finite Time between Finite Heat Sources and Sinks,” Journal of Chemical Physics, Vol. 78, No. 7, pp. 4721-4727, 1983.
    Wu, C., and Kiang, R.L., “Work and Power Optimization of a Finite-Time Brayton Cycle,” International Journal of Ambient Energy, Vol. 11, No. 3, pp. 129-136, 1990.
    Wu F., Chen L., Wu C., Sun F., “Optimum Performance of Irreversible Stirling Engine with Imperfect Regeneration,” Energy Convers. Mgmt, Vol. 39, No. 8, pp. 727-732, 1998.
    Yan, Z. and Chen, J., “Optimal Performance of Endoreversible Cycles for Another Linear Heat Transfer Law,” Journal of Physics D: Applied Physics, Vol. 6, No. 11, pp. 1581-1586, 1993.
    李哲宇, “有限時間內可逆具共生熱之熱力循環系統之最大有用能率分析,” 國立成功大學機械工程研究所碩士論文, 2009.
    鄭慶陽,“有限時間熱力學在熱力循環上之應用,” 國立成功大學機械工程研究所博士論文, 1996.
    葉蔚青, “有限時間史特林引擎之最大功率分析,” 國立成功大學機械工程研究所碩士論文, 2010.

    下載圖示 校內:2013-08-04公開
    校外:2021-01-01公開
    QR CODE