簡易檢索 / 詳目顯示

研究生: 王淳弘
Wang, Chun-Hong
論文名稱: 前氧化劑對於藻體胞外物作用之影響
The Effect of Preoxidants on the Extracellular Polymeric Substances of Algae
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 高錳酸鉀臭氧藻類螢光FTIR
外文關鍵詞: fluorescence, FTIR, ozone, algae, potassium permangate
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於河川水源及集水區受污染的情況日益嚴重,而易引起水庫的優養化(Eutrophication)。優養化的水質,很容易造成藻類的蔓延與滋長,藻類之大量生長會影響水質的色澤和臭味。藻類大量繁殖的水源,易造成水處理的困難,即使經過傳統的淨水處理程序後,有時仍然帶有一些顏色,給人不愉快的視覺。此外,某些藻類本身也具有毒性,可能危害人體健康。

    本研究目的主要是以氧化劑進行藻體氧化,觀察並探討藻體氧化前後之差異,以純藻:綠藻(Chodatella sp.)和矽藻(Nitzschia sp.)分別配製人工懸浮藻液。對其分別以高錳酸鉀及臭氧氧化後,針對氧化前後藻體胞外物變化之原因,進行下列試驗以進一步尋找可能之因素:分別以光譜分析與螢光強度測定,進行藻體胞外物之定性、定量;測定界達電位以觀查藻體表面電位之改變;以高效液相層析儀進行藻體胞外物(Bound EPS)分子量分析;觀察藻體氧化前後凝聚現象之變化。

    研究結果顯示,綠藻(Chodatells sp.)和矽藻(Nitzschia sp.)以不同高錳酸鉀添加劑量進行氧化時,可以發現綠藻與矽藻之螢光強度皆有隨劑量增加而提升螢光強度的趨勢,高錳酸鉀能刺激藻體細胞分泌胞外物質。以臭氧低劑量進行藻體氧化時,藻體螢光有明顯增加的趨勢,然而臭氧劑量持續增加時,螢光強度有減少的現象。所以認為臭氧在低劑量下能刺激藻體,使胞外物質增加,當臭氧劑量較高時,胞外物可能被臭氧降解而減少。

    在紅外光譜分析方面,綠藻與矽藻皆發現有胜鍵的存在,顯示蛋白質為藻體胞外物質重要成分之一。以矽藻而言,則可以發現矽類官能基(Si-O-Si、Si-O-C)為主要成分之一。
    經實驗分析綠藻的分子量約為6000;矽藻的分子量約為9700,使用高錳酸鉀或臭氧進行氧化試驗後,其胞外物分子量並沒有顯著的變化。

    以高錳酸鉀對綠藻進行氧化,其藻體間凝聚現象有隨添加劑量增加而提高的情形;以臭氧進行氧化試驗,在較高劑量2 mg/L時,方才觀察到藻體間稍有凝聚現象。在矽藻方面,經過高錳酸鉀和臭氧氧化後,矽藻凝聚現象的變化皆不甚明顯。

    Eutrophication is becoming a more serious problem in Taiwan due to the discharge of pollutants into rivers and reservoirs. The growth of algae may affect water quality, such as causing color and odor problems. Some species of algae may even release toxin. This kind of water is difficult to treat by conventional treatment process. Unpleasant color may still be present in the treated water.

    The main purpose of this research is to study the changes in extracellular polymeric substances of algae after treatment by two oxidants, namely potassium permagnate (KMnO4) and ozone. Synthetic algal suspensions with pure culture of Chodatella sp. or Nizschia sp. was used. Several tests were done to observe those changes: Fourier transformed infrared spectroscopy (FTIR) and florescence intensity was used as qualitative and quantitative analysis of EPS, respectively. Zeta potential of the algal surface was also measured. The molecular weight (MW) of the bound EPS was determined with high performance size exclusion chromatography (HPSEC). Also, the change in aggregation of algae was observed by microscope.

    Results showed that there was a positive correlation between dosage of KMnO4 and fluorescence intensity for Chodatells sp. and Nitzschia sp.. This shows that KMnO4 may stimulate the production of EPS. Similar trend was found when using low concentration of ozone as oxidant. But when ozone dosage became higher, the fluorescence intensity decreased.It is speculated that EPS may be degraded by higher concentration of ozone.

    In FTIR analysis, peptide bonds were found in both Chodatell sp. and Nitzschia sp.. This shows that protein may be one of the most important components of EPS. Silicon containing functional groups (Si-O-Si, Si-O-C) were also found in Nitzschia sp..
    Molecular weight of Chodatells sp. is about 6000, and about 9700 for Nitzschia sp.. After treatment with potassium permagnate and ozone, no significant change was found in the MW of their EPS.

    The Chodatells sp. became more aggregate when the dosage of KMnO4 increased. When treating with ozone, aggregation was only observed when ozone concentration was higher than 2 mg/L. For Nitzschia sp., the aggregation phenomenon was not obvious after treating with KMnO4 and ozone.

    目 錄 中文摘要………………………………………………………………I 英文摘要………………………………………………………………III 誌謝……………………………………………………………………V 目錄……………………………………………………………………VII 表目錄…………………………………………………………………XI 圖目錄…………………………………………………………………XII 第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2-1 藻類對湖泊/水庫之影響…………………………………………3 2-2 藻類特性………………………………………………………….4 2-2-1 藻類之物化特性…………………………………………….4 2-2-2 藻類生理組成……………………………………………….6 2-2-3 藻類帶電性質……………………………………………….8 2-3 藻類介紹………………………………………………………….9 2-3-1 綠藻………………………………………………………….9 2-3-2 矽藻………………………………………………………….9 2-4 高錳酸鉀基本特性與作用機制………………………………….11 2-5 臭氧基本特性與作用機制……………………………………….15 2-6 前氧化作用對淨水程序除藻之影響…………………………….18 2-6-1 高錳酸鉀對淨水程序中除藻之影響………………………….19 2-6-2 臭氧對淨水程序中除藻之影響……………………………….20 2-7 螢光染劑之特性………………………………………………….21 2-7-1 螢光染劑…………………………………………………….21 2-7-2 螢光染劑應該具備之條件………………………………….21 2-7-3 FITC(fluorescein isothiocyanate)之結構與特性…….23 2-8 傅立葉轉換紅外光譜分析儀(FTIR)…………………………….25 2-8-1 紅外光譜分析……………………………………………….25 2-8-2 衰減式全反射之傅立葉轉換紅外光譜分析( ATR-FTIR ).25 第三章 實驗程序、材料與方法………………………………………28 3-1 實驗規劃………………………………………………………….28 3-2 人工藻液的製備………………………………………………….28 3-2-1 綠藻之培養環境及條件…………………………………….28 3-2-2 綠藻濃度計數……………………………………………….30 3-2-3 矽藻之培養環境及條件…………………………………….33 3-2-4 矽藻濃度計數……………………………………………….33 3-2-5 藻類之計數-鏡檢……………………………………………36 3-2-6 實驗人工藻體原水之配製………………………………….37 3-3 氧化劑的製備與使用…………………………………………….37 3-3-1 高錳酸鉀溶液之製備…………………………………….…37 3-3-2 高錳酸鉀濃度之標定……………………………………….37 3-3-3 臭氧反應器設備…………………………………………….38 3-3-4 氣相中臭氧之測定………………………………………….41 3-3-5 臭氧機產率與功率之關係………………………………….41 3-4 水質參數之分析方法…………………………………………….43 3-4-1 胞外黏質層之分析…………………………………………….43 3-4-2 界達電位……………………………………………………….45 3-4-3 表面官能基分析(ATR-FTIR)………………………………….46 3-4-4 胞外物分子量分布(High performance size exclusion chromatography, HPSEC) ……………………………………47 3-5 水質參數之分析方法…………………………………………….50 3-5-1 pH值…….……………………………………………………50 3-5-2 濁度………………………………………………………….51 3-5-3 OD684吸光值…………………………………………………51 第四章 結果與討論……………………………………………………52 4-1 氧化後藻體平均螢光強度之改變……………………………….52 4-1-1 高錳酸鉀氧化綠藻之平均螢光強度變化…………………….52 4-1-2 臭氧氧化綠藻之平均螢光強度變化………………………….54 4-2 氧化劑對綠藻體表面電位之影響……………………………….56 4-3 氧化劑對綠藻細胞表面之官能基影響………………………….59 4-4 綠藻氧化前後胞外物分子量之變化…………………………….63 4-5 綠藻氧化前後之藻體凝聚現象………………………………….65 4-6 氧化前後矽藻螢光強度之改變………………………………….69 4-6-1 高錳酸鉀氧化矽藻之螢光強度變化………………………….69 4-6-2 臭氧氧化矽藻之螢光強度變化……………………………….71 4-7 氧化劑對矽藻體表面電位之影響……………………………….73 4-8 氧化劑對矽藻細胞表面之官能基影響………………………….75 4-9 矽藻氧化前後胞外物分子量之變化…………………………….79 4-10 矽藻氧化前後之藻體凝聚現象………………………………….81 第五章 結論……………………………………………………………83 參考文獻…………………………………………………………………84 附錄 A、檢量線…………………………………………………………92 附錄 B、藻體與螢光染劑反應後於螢光顯微鏡下之藻相……………95 表 目 錄 表2-1 不同溫度下高錳酸鉀之溶解度……………………………….12 表2-2 高錳酸鉀之物化特性………………………………………….12 表2-3 臭氧之物化特性……………………………………………….17 表2-4 常用螢光染劑資料…………………………………………….22 表2-5 為FITC接合不同lectin的整理表…………………………….24 表2-6 為藻體經FTIR之官能基與成分分析表……………………….27 表2-7 胞外物質的化學組成………………………………………….27 表3-1 綠藻(Chodatella sp.)培養液成份………………………….32 表3-2 矽藻(Nitzschia sp.)培養液成份……………………………34 表3-3 分子量分離管柱相關參數…………………………………….50 表4-1 高錳酸鉀劑量與綠藻平均螢光強度關係表………………….53 表4-2 臭氧劑量與綠藻平均螢光強度關係表……………………….55 表4-3 綠藻氧化前後進行紅外線光譜分析表……………………….62 表4-4 不同氧化劑量與含綠藻膠羽之球體直徑關係表…………….68 表4-5 高錳酸鉀劑量與矽藻平均螢光強度關係表………………….70 表4-6 臭氧劑量與矽藻平均螢光強度關係表……………………….72 表4-7 矽藻氧化前後進行紅外線光譜分析表……………………….78 表4-8 不同氧化劑量與含矽藻膠羽平均直徑關係表……………….82 圖 目 錄 圖2-1 為高錳酸鉀經水解反應後,所生成的二氧化錳膠體其表面性質示意圖...…………………………………………………………….14 圖2-2 螢光染劑之激發光與釋放光頻譜圖………………………….22 圖2-3 FITC之光譜圖與化學結構式………………………………….23 圖2-4 衰減式全反射之紅外光譜分析示意圖……………………….26 圖3-1 研究架構流程圖……………………………………………….29 圖3-2 分光光度計偵測綠藻藻液之最佳吸收波長………………….31 圖3-3 綠藻濃度與吸光值之關係圖………………………………….31 圖3-4 矽藻濃度與濁度之關係圖…………………………………….35 圖3-5 臭氧氧化裝置設備圖………………………………………….40 圖3-6 臭氧機產率與供應功率之關係…………………………………42 圖3-7分子量與停留時間之關係圖…………………………………….49 圖4-1 綠藻在不同高錳酸鉀劑量下,平均螢光強度之變化情形….53 圖4-2 綠藻在不同臭氧劑量下,平均螢光強度之變化情形……….55 圖4-3 高錳酸鉀與臭氧不同氧化劑量,綠藻界達電位之變化…….57 圖4-4 綠藻以不同濃度高錳酸鉀氧化後之紅外線光譜分析圖…….61 圖4-5 綠藻以不同濃度臭氧氧化後之紅外線光譜分析圖………….61 圖4-6 高錳酸鉀與臭氧對綠藻胞外物分子量之影響……………….64 圖4-7 綠藻與不同高錳酸鉀劑量反應後顯微鏡觀察之照相圖…….66 圖4-8 綠藻與不同臭氧劑量反應後顯微鏡觀察之照相圖………….67 圖4-9 高錳酸鉀與臭氧對含綠藻膠羽之球體直徑關係…………….68 圖4-10 矽藻在不同高錳酸鉀劑量下,平均螢光強度的變化情形….70 圖4-11 矽藻在不同臭氧劑量下,平均螢光強度的變化情形……….72 圖4-12 高錳酸鉀與臭氧不同氧化劑量,矽藻界達電位之變化…….74 圖4-13 矽藻以不同濃度高錳酸鉀氧化後之紅外線光譜分析圖…….77 圖4-14 矽藻以不同濃度臭氧氧化後之紅外線光譜分析圖………….77 圖4-15 高錳酸鉀與臭氧對矽藻胞外物分子量之影響……………….80 圖4-16 高錳酸鉀與臭氧對含矽藻膠羽平均直徑關係……………….82

    Allen, H.E.and Hansen, D.J. (1996) “The importnace of trace metal speciation to water quality criteria.” Wat. Environ. Res., 68 : 42-54.

    Chow, C.W.K., House, J., Velzeboer, R.M.A., Drikas, M., Burch, M.D. and Steffensen, D.A. (1998) “The effect of ferric chloride flocculation on Cyanobacterial cell.” Wat. Res., 32 : 3 : 808-814.

    Chow, C.W. K., Drikas M., House, J., Burch, M.D. (1999) “The impact of conventional water treatment process on cells of the Cyanobacterium Microcystis Aeruginosa.” Wat. Res., 33 : 15 : 3253-3262.

    Dade, W.B., Davis, J.D., Nichols, P.D., Nowell, A.R.M., Thistle, D.,Trexler, M.B. and White, D.C. (1990) “Effects of bacterial exopolymer adhesion on the entrainment of sand.” Geomicrobiol. J., 8: 1-16.

    Dolejs, P. (1993) “Influence of algae and their exudates on removal of humic substances and optimal dose of coagulant.” Wat. Sci. Tech., 27: 11: 123-132.

    Edzwald, J.K. and Paralkar, A. (1992) “Algae, coagulation, and ozonation.” Chemical Water and Wastewater Treatment, 2 : 263-279.

    Grossart, H.-P. and Simon, M. (1993) “Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance.” Limnol. Oceanogr., 38: 532-546.

    Grossart, H.-P., Simon, M. and Logan, B.E. (1997) “Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton.” Limnol. Oceanogr., 42: 1651-1659.

    Hazen and Sawyer, (1992) “Disinfection alternatives for safe drinking water.” Van Nostrand Reinhold, New York, NY.

    Her, N., Amy, G., Park, H.R., Song, M. (2004) “Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling.” Wat. Res., 38: 1427-1438.

    Hori K., Ogata T., Kyamiya H., Mimuro M. (1996) “Lectin-like compounds and lectin receptors in marine microalgae: hemagglutiation and reactivity with purified lectins.” J. Phycol., 32: 783-790.

    Ianora, A. (2004) “Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom.” Nature, 27 : 429 : 403-407.

    Kàroly, B., Gàbor, J., Zsuzsa, G., Péter, K. (2000) “Binding of FITC-labelled lectins to the gastrointestinal epithelium of the rat.” Pathology Oncology Research, 6 : 3.

    Kiefer, E., Sigg, L., and Schosseler, P. (1997) “Chemical and spectroscopic characterization of algae surfaces.”Environ. Sci. Technol., 31: 3: 759-764.

    Konno, H. (1993) “Settling and coagulation of slender Ttype diatoms.” Wat. Sci. Tech., 27 : 11 : 231-240.

    Lam, A.K.Y., Prepas, E.E., Spink, D. and Hrudey, S.E. (1995) “Chemical control of hepatotoxic phytoplankton blooms: implictions for human health.” Wat. Res., 29: 8 : 1845-1854.

    Lancelot, C. (1995) “The mucilage phenomenon in the continental coastal water of the North Sea.” Sci. Tot. Envir.,165: 83-102.

    Leppard, G.G., Massalski A. and Lean D.R.S. (1977) “Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations.” Protoplasma, 92: 289-309.

    Leppard, G.G. (1995) “The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems.” Sci. Tot. Envir., 165: 103-131.

    Leppard, G.G. (1997) “Colloidal organic fibrils of acid polysaccharides in surface Water: electron-optical characteristics, activities and chemical estimates of abundance.” Colloids and Surfaces A: physicochemical and Engineering Aspects, 120: 1-15.

    Leung, P.C. (2003) “Effect of extracellular polymeric substances on the bioflocculation and sedimentation of diatom blooms and activated sludge.” for the degree of Master of Philosophy , the University of Hong Kon.

    Li, X.Y., Yang, S.F. (2007) “Influence of loosely bound extracellular polymeric substance(EPS) on the flocculation, sedimentation and dewaterability of activated sludge.” Wat. Res., 41 : 1022-1030.

    Lombardi, A.T. and Vieira, A.A.H. (1998) “Copper and lead cornplexation by high molecular weight compounds produced by Synura sp. (Chrysophyseae).” Phycologia, 37 : 1 : 34-39.

    Malis-Ared, S., Friedlander, M., Ben-Arie, R. and Richmond, A.E. (1980) “Alkalinity-induced aggregation in Chlorella Vulgaris I. changes in cell volume and cell-wall structure.” Plant & Cell Physiol., 21 : 1 : 27-35.

    Mecozzi, M., Acquistucci, R., Noto, V.D., Pietrantonio, E., Amici, M., Cardarilli, D. (2001) “Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance.” Chemosphere, 44 : 709-720.

    Montiel. A, Welté, B. (1998) “Preozonation coupled with flotation filtration:successful removal of algae.” Wat. Sci. Tech., 37 : 2 : 65-73.

    Mouchet, P. and Bonnélye, V. (1998) “Solving algae problem: fresh expertise and world-wide application.” J. Water SRT-Aqua, 47: 3: 125-141.

    Myklestad, S.M. (1995) “Release of extracellular products by phytoplankton with special emphasis on polysaccharides.” The Science of the Total Enviroment, 165: 155-164.

    Peterson, H.G., Hrudey, S.E., Cantin, I.A., Perley, T.R. and Kenefick, S.L. (1995) “Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by aphanizomenon flos-aquae after exposure to water treatment chemicals.” Wat. Res., 29 : 6 : 1515-1523.

    Petruševski, B., van Breeman, A.N. and Alaerts, G.J. (1996) “Effect of permanganate pretreatment and coagulation with dual coagulants on algae removal in direct filtration.” J. Wat. Suppl. Res. Technol–AQUA, 45 : 5 : 316-326.

    Pieterse, A.J.H. and Cloot, A. (1997) “Algal cells and coagulants flocculation and sedimentation process.” Wat. Sci Tech., 36 : 4 : 111-118.

    Plummer, J.D., Edzwald, J.K. (2002) “Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation.” J. of Water Supply: Research and Technology - AQUA, 51 : 6 : 307-318.

    Reckhow, D.A., Leqube, B., and Singer, P.C. (1986) “The ozonation of organic halide precursors: effect of bicarbonate.” Water Res., 20 : 8 : 987-998.

    Rice, R. G. (1989) “Ozone oxidation products- implications for drinking water treatment.” In Larson, R. A., (Eds) biohazard of drinking water treatment, lewis publishers,Inc. Chelsea, MI.

    Sukenik, A., Teltch, B., Wachs, A.W., Shelef, G., Nir, I., and Levanon, D. (1987) “Effect of oxidants on microalgal flocculation.” Wat. Res., 21: 5: 533-539.
    Sterngerg, M.C., Pieterse, A.J.H. and Gelden, J.C. (1996) “Improved coagulation and filtration of algae as a result of morphological and behavioural changes due to preoxidation.” J. Water SRT-Aqua, 45 : 6 : 292-298.

    Stuart, B. (1996) “Modern infrared spectroscopy.” Wiley, Chichester, UK

    Surek, B. and Sengbusch P.V. (1981) “The localization of galactosyl residues and lectin receptors in the mucilage and the cell walls of Cosmocladium saxonicum(desmidiaceae) by means of fluorescent probes.” Protoplasma, 108 : 149-161.

    Tien C.-J., Krivtso, V., Levado, E. , Sigee D.C. and White K.N. (2002) “Occurrence of cell-associated mucilage and soluble extarcellular polysaccharides in Rostherne Mere and their possible significance.” Hydrobiologia, 485: 245-252.

    Tien C.-J., Sigee D.C., and White K.N. (2005) “Characterization of surface sugars on algal cells ssing FITC-conjugated lectins.” Protoplasma, 225 : 225-233.

    Van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) “Algae : an introduction to phycology.” Cambridge University Press , Cambridge , United Kingdom.

    Vlaški , A., van Breemen, A.N., Alaserts, G.J. (1996) “Optimisation of coagulation conditions for the removal of Cyanobacteria by dissolved air flotation or sedimentation.” J. Water SRT-Aqua, 45 : 5: 253-261.

    Volesky, B.,Holan Z.R. (1995) “Biosorption of heavy metal.” Biotechnol Progress, 11: 235-250.

    Wingender, J., Neu, T.R., Flemming, H.C. (1999) “Microbial extracellular polymeric substances, characterization, structure and function, springer-verlag.” Berlin Heidelberg, Germany.

    蔡倩誼 “前氧化劑對藻類去除之影響”, 國立成功大學環境工程學系碩士論文, 2006

    陳振正 “高錳酸鉀與臭氧對混凝除藻的影響”, 國立成功大學環境工程學系博士論文, 2005

    周松霖 “前氧化劑對藻類作用之影響”, 國立成功大學環境工程學系碩士論文, 2005

    陳冠全 “舟形藻Navicula sp.及雙眉藻Amphora sp. 在不同溫度及光照下之成長及植入此兩種矽藻對九孔附著苗活存之研究”, 國立台灣海洋大學水產養殖學系碩士論文, 2004

    顏毅廣 “全反射螢光顯微技術應用於蛋白質分子之即時偵測與操控”, 國立台灣大學應用力學研究所碩士論文, 2004

    陳蕙如 “生物化學實驗”, 高立出版, 台北縣, 2004

    石清華 “矽藻中矽沉積相關蛋白”, 國立清華大學生命科學系碩士論文, 2003

    林青郁 “人體角質層脂肪含量與藥品滲透性之關係:應用紅外光譜之分析研究”, 國立成功大學臨床藥學研究所碩士論文, 2000
    葉宣顯、鄭幸雄、曾怡禎、林財富 “澄清湖高級淨水處理模型廠試驗研究”, 國立成功大學環境工程系, 1999

    徐明光 “台灣的淡水浮游藻(I)-通論及綠藻(1)”, 國立台灣博物館, 台北市, 1999

    曾四恭 “水庫優養化對水質影響及水質處理研究《環境工程研究報告》No.243”, 國立台灣大學環境工程學研究所, 1990

    陳是瑩、曾怡禎 “澄清湖藻類圖鑑 Illustration of the algae of Cheng-Ching Lake in Taiwan”, 國立成功大學生物系, 1986

    陳是瑩、李俊德、曾怡禎 “澄清湖浮游生物與放線菌繁殖狀況對水源臭味之影響 研究報告第21號”, 1982

    下載圖示 校內:立即公開
    校外:2007-09-11公開
    QR CODE