簡易檢索 / 詳目顯示

研究生: 黃寶宗
Huang, Bao-Zong
論文名稱: 南印度麻粒岩地體中新元古代超高溫變質事件和新生地殼增生與古老地殼循環年代及構造環境判別之綜合探討
An integrated study of Neoproterozoic ultra-high-temperature metamorphic events, the timing of juvenile crustal accretion and ancient crustal recycling, and tectonic setting discrimination in the Southern Granulite Terrane of southern India
指導教授: 陳卉君
Chen, Hui-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 58
中文關鍵詞: 南印度麻粒岩地體新元古代超高溫變質作用地殼增生與再循環大陸弧鋯石 U–Pb 定年與 Lu–Hf 同位素
外文關鍵詞: Southern Granulite Terrane, Neoproterozoic ultra-high temperature metamorphism, Crustal growth and recycling, Continental arc, Zircon U–Pb geochronology and Lu–Hf isotopes
相關次數: 點閱:34下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 南印度麻粒岩地體(SGT)富含斜方輝石(orthopyroxene)的高級變質岩地體,其構造複雜由多個剪切帶構成和區分,可細分為3塊(Nilgiri–Namakkal Block、Madurai Block、Trivandrum Block),本研究區位於Nilgiri–Namakkal Block。根據鋯石鈾鉛定年結果,得到了3個樣本的變質年齡分別為825±110為百萬年、717±77百萬年、545.8±6.8百萬年,而磷灰石鈾鉛定年測得的樣本變質年齡為509.7±9.9 百萬年,顯示在新元古代有變質作用。透過結合分析εHf(t) vs 鈾鉛年齡和TDM1模型年齡得出在約28~25億年前有新生岩漿來源的地殼增生,而約5億年前有古老大陸地殼的參與。大離子親石元素(LILE,Ba、K、Pb)為富集,高場強元素(HFSE,Nb、Ta、Ti)虧損為隱沒帶的特徵,地球化學數據圖證實為具大陸弧構造環境特徵。球粒隕石標準化的稀土元素(REE)分布圖中重稀土元素的走勢平坦。本文將鈾鉛定年、鋯石鎦鉿同位素、陰極發光影像、主微量元素地球化學分析之結果來進行綜合性討論。

    The Southern Granulite Terrane (SGT) in South India is a high-grade metamorphic region rich in orthopyroxene. Its structure is complex, with many shear zones that divide it into different crustal blocks. It could be divided into three main blocks: the Nilgiri–Namakkal Block, the Madurai Block, and the Trivandrum Block. This study focuses on the Nilgiri–Namakkal Block. Zircon U–Pb dating shows that three samples have metamorphic ages of 825 ± 110 Ma, 717 ± 77 Ma, and 545.8 ± 6.8 Ma. Apatite U–Pb dating gives a meta-morphic age of 509.7 ± 9.9 Ma, showing that metamorphism happened during the Neo-proterozoic(about 1000–541Ma). Analysis of εHf(t) values together with U–Pb ages and TDM1 model ages suggests that new magmatic crust from the mantle was added between about 2.8 and 2.5 Ga, and that old continental crust was involved around 500 Ma. Geo-chemical data show enrichment in large ion lithophile elements (LILE: Ba, K, Pb) and depletion in high field strength elements (HFSE: Nb, Ta, Ti), which are typical signs of subduction zones. Tectonic discrimination diagrams confirm that the setting was a conti-nental arc. The chondrite-normalized rare earth element (REE) patterns show a flat trend in heavy rare earth elements (HREE). This study combines the results of U–Pb dating, zircon Lu–Hf isotope analysis, CL image, and major and trace element geochemistry for a comprehensive discussion.

    中文摘要 i Abstract ii 目錄 vii 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 區域地質背景 4 第三章 研究方法 12 3.1 全岩主量元素分析 12 3.2 全岩微量元素分析 14 3.3 岩石薄片觀察分析 15 3.4 鋯石鈾-鉛年齡分析 16 3.5 鋯石鎦-鉿同位素分析 18 3.6 磷灰石鈾-鉛年齡分析 19 第四章 研究結果 21 4.1 鋯石鈾鉛年齡 21 4.2 鎦鉿同位素 22 4.3 磷灰石鈾鉛年齡 25 4.4 鋯石、磷灰石陰極發光(CL)影像 29 4.5 主量元素 30 4.6 微量元素 32 第五章 討論 37 5.1 構造環境 37 5.2 岩漿來源與新生地殼和古老地殼參與年代 37 5.3 地質年代-超高溫變質事件 39 第六章 結論 41 參考文獻 42

    Amal Dev, J., N. Sorcar, S. Mukherjee and J. Tomson (2023). "Phase equilibrium modelling and zircon-monazite geochronology of HT-UHT granulites from Kambam ultrahigh-temperature belt, south India." International Geology Review 65(9): 1457-1475.
    Blichert-Toft, J. and F. Albarède (1997). "The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system." Earth and Planetary Science Letters 148(1-2): 243-258.
    Boltwood, B. B. (1907). "On the ultimate disintegration products of the radio-active elements. Part II. The disintegration products of uranium." American Journal of Science 4(134): 77-88.
    Brandt, S., M. M. Raith, V. Schenk, P. Sengupta, C. Srikantappa and A. Gerdes (2014). "Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites." Precambrian Research 246: 91-122.
    Brandt, S., V. Schenk, M. Raith, P. Appel, A. Gerdes and C. Srikantappa (2011). "Late Neoproterozoic PT evolution of HP-UHT granulites from the Palni Hills (South India): New constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating." Journal of Petrology 52(9): 1813-1856.
    Braun, I., B. Cenki-Tok, J.-L. Paquette and M. Tiepolo (2007). "Petrology and U–Th–Pb geochronology of the sapphirine–quartz-bearing metapelites from Rajapalayam, Madurai Block, Southern India: evidence for polyphase Neoproterozoic high-grade metamorphism." Chemical Geology 241(1-2): 129-147.
    Braun, I. and L. M. Kriegsman (2003). "Proterozoic crustal evolution of southernmost India and Sri Lanka." Geological Society, London, Special Publications 206(1): 169-202.
    Brown, M. and M. Raith (1996). "First evidence of ultrahigh-temperature decompression from the granulite province of southern India." Journal of the Geological Society 153(6): 819-822.
    Chen, N. H.-C., G. Zhao, B.-m. Jahn, M. Sun and H. Zhou (2017). "U-Pb zircon ages and Hf isotopes of∼ 2.5 Ga granitoids from the Yinshan Block, North China Craton: implications for crustal growth." Precambrian Research 303: 171-182.
    Chetty, T. (2021). "Multiple thrust systems from the Southern Granulite Terrane, India: Insights on Precambrian convergent margin tectonics." Journal of Asian Earth Sciences 208: 104674.
    Chew, D., J. Petrus and B. Kamber (2014). "U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb." Chemical Geology 363: 185-199.
    Chew, D. M., P. J. Sylvester and M. N. Tubrett (2011). "U–Pb and Th–Pb dating of apatite by LA-ICPMS." Chemical Geology 280(1-2): 200-216.
    Chin, E. J., K. Shimizu, G. M. Bybee and M. E. Erdman (2018). "On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective." Earth and Planetary Science Letters 482: 277-287.
    Collins, A. S., M. Santosh, I. Braun and C. Clark (2007). "Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry." Precambrian Research 155(1-2): 125-138.
    Corfu, F., J. M. Hanchar, P. W. Hoskin and P. Kinny (2003). "Atlas of zircon textures." Reviews in mineralogy and geochemistry 53(1): 469-500.
    Cox, K. G. (2013). The interpretation of igneous rocks, Springer Science & Business Media.
    Das, R. and S. Rai (2019). "Redefining Dharwar Craton-Southern granulite terrain boundary in south India from new seismological constraints." Precambrian Research 332: 105394.
    Dev, J. A., J. Tomson, T. V. Kumar and N. Sorcar (2023). "Age and petrogenesis of mafic granulites from central Madurai block, south India: implications on regional tectonics." Geological Magazine 160(5): 955-971.
    Dev, J. A., J. Tomson, N. Sorcar and K. A. Francis (2022). "Timing of UHT metamorphism and cooling in south Indian granulites: New PTt results from a sapphirine granulite." Precambrian Research 371: 106582.
    Drury, S., N. Harris, R. Holt, G. Reeves-Smith and R. Wightman (1984). "Precambrian tectonics and crustal evolution in South India." The Journal of Geology 92(1): 3-20.
    Drury, S. and R. Holt (1980). "The tectonic framework of the South Indian craton: a reconnaissance involving LANDSAT imagery." Tectonophysics 65(3-4): T1-T15.
    Fermor, S. L. L. (1936). An Attempt at the Correlation of the Ancient Schistose Formatins of Peninsular India, Geological survey of India.
    Ganguli, S. S., S. K. Pal and R. Singh (2024). "Crustal architecture of the Dharwar craton and Southern Granulite Terrane, Southern India, from the analysis of gravity-magnetic data." Physics and Chemistry of the Earth, Parts A/B/C 133: 103532.
    Ghosh, J. G., M. J. de Wit and R. Zartman (2004). "Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies." Tectonics 23(3).
    Gill, J. B. (1981). Orogenic andesites and plate tectonics, Springer Science & Business Media.
    Griffin, W., X. Wang, S. Jackson, N. Pearson, S. Y. O'Reilly, X. Xu and X. Zhou (2002). "Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes." Lithos 61(3-4): 237-269.
    Griffin, W. L., N. J. Pearson, E. Belousova, S. v. Jackson, E. Van Achterbergh, S. Y. O’Reilly and S. Shee (2000). "The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites." Geochimica et cosmochimica acta 64(1): 133-147.
    HARLEY, S. L. (1985). "Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure temperature-time evolution of the Archaean Napier Complex." Journal of Petrology 26(4): 819-856.
    Harley, S. L. (1998). "On the occurrence and characterization of ultrahigh-temperature crustal metamorphism." Geological Society, London, Special Publications 138(1): 81-107.
    Harris, N., R. Holt and S. Drury (1982). "Geobarometry, geothermometry, and late Archean geotherms from the granulite facies terrain of South India." The Journal of Geology 90(5): 509-527.
    Higgins, M. W., A. K. Sinha, R. E. Zartman and W. S. Kirk (1977). "U-Pb zircon dates from the central Appalachian Piedmont: A possible case of inherited radiogenic lead." Geological Society of America Bulletin 88(1): 125-132.
    Hollocher, K., P. Robinson, E. Walsh and D. Roberts (2012). "Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: a key to correlations and paleotectonic settings." American Journal of Science 312(4): 357-416.
    Irvine, T. N. and W. Baragar (1971). "A guide to the chemical classification of the common volcanic rocks." Canadian journal of earth sciences 8(5): 523-548.
    Jayananda, M., J.-F. Moyen, H. Martin, J.-J. Peucat, B. Auvray and B. Mahabaleswar (2000). "Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry." Precambrian Research 99(3-4): 225-254.
    Kadowaki, H., T. Tsunogae, X. F. He, M. Santosh, Y. Takamura, E. Shaji and Y. Tsutsumi (2019). "Pressure‐temperature‐time evolution of ultrahigh‐temperature granulites from the Trivandrum Block, southern India: Implications for long‐lived high‐grade metamorphism." Geological Journal 54(5): 3041-3059.
    Kempe, U. and J. Gotze (2002). "Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits." Mineralogical Magazine 66(1): 151-172.
    Krogstad, E. J. and R. J. Walker (1994). "High closure temperatures of the U-Pb system in large apatites from the Tin Mountain pegmatite, Black Hills, South Dakota, USA." Geochimica et Cosmochimica Acta 58(18): 3845-3853.
    Liu, Y., Z. Hu, S. Gao, D. Günther, J. Xu, C. Gao and H. Chen (2008). "In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard." chemical Geology 257(1-2): 34-43.
    Ludwig, K. R. (2003). "Isoplot/Ex version 2.49: a geochronology toolkit for Microsoft Excel." Berkeley Geochronology Center Special Publication 55.
    Mullen, E. D. (1983). "MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis." Earth and planetary science letters 62(1): 53-62.
    Nowell, G., P. Kempton, S. Noble, J. Fitton, A. Saunders, J. Mahoney and R. Taylor (1998). "High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle." Chemical Geology 149(3-4): 211-233.
    Patchett, P. and M. Tatsumoto (1980). "Hafnium isotope variations in oceanic basalts." Geophysical Research Letters 7(12): 1077-1080.
    Patchett, P. and M. Tatsumoto (1980). "Lu–Hf total-rock isochron for the eucrite meteorites." Nature 288(5791): 571-574.
    Pearce, J. A. (2008). "Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust." Lithos 100(1-4): 14-48.
    Plavsa, D., A. S. Collins, J. D. Foden and C. Clark (2015). "The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India." Tectonics 34(5): 820-857.
    Praharaj, P. and S. Rekha (2024). "Geochemical evidences of subduction along the Achankovil terrane boundary shear zone, Southern Granulite Terrane, South India." Journal of Earth System Science 133(1): 45.
    Prakash, D., S. Prakash and H. Sachan (2010). "Petrological evolution of the high pressure and ultrahigh-temperature mafic granulites from Karur, southern India: evidence for decompressive and cooling retrograde trajectories." Mineralogy and Petrology 100(1): 35-53.
    Prakash, D., R. Yadav, S. Tewari, H. Frimmel, N. Koglin, H. Sachan and M. Yadav (2018). "Geochronology and phase equilibria modelling of ultra‐high temperature sapphirine+ quartz‐bearing granulite at Usilampatti, Madurai Block, Southern India." Geological Journal 53(1): 139-158.
    Raith, M., S. Karmakar and M. Brown (1997). "Ultra‐high‐temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, southern India." Journal of Metamorphic Geology 15(3): 379-399.
    Rao, V. V., K. Sain, P. Reddy and W. D. Mooney (2006). "Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India." Earth and Planetary Science Letters 251(1-2): 90-103.
    Rollinson, H. R. (2014). Using geochemical data: evaluation, presentation, interpretation, Routledge.
    Santosh, M. (2020). "The southern granulite terrane: a synopsis." Episodes Journal of International Geoscience 43(1): 109-123.
    Shand, S. J. (1943). Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites, J. Wiley & sons, Incorporated.
    Söderlund, U., P. J. Patchett, J. D. Vervoort and C. E. Isachsen (2004). "The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions." Earth and Planetary Science Letters 219(3-4): 311-324.
    Sun, S.-S. and W. F. McDonough (1989). "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes." Geological Society, London, Special Publications 42(1): 313-345.
    Talukdar, M., T. Sarkar, P. Sengupta and D. Mukhopadhyay (2022). "The Southern Granulite Terrane, India: The saga of over 2 billion years of Earth's history." Earth-Science Reviews 232: 104157.
    Tomson, J. and J. A. Dev (2024). "Tracing the crustal evolution of the Precambrian Southern Granulite terrane in East Gondwana: New insights from zircon U-Pb/Hf geochronology." Bulletin 136(5-6): 2075-2096.
    Williams, I., W. Compston, L. Black, T. Ireland and J. Foster (1984). "Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages." Contributions to Mineralogy and Petrology 88(4): 322-327.
    Yellappa, T., T. Chetty and M. Santosh (2016). "Precambrian iron formations from the Cauvery Suture Zone, Southern India: Implications for sub-marine hydrothermal origin in Neoarchean and Neoproterozoic convergent margin settings." Ore Geology Reviews 72: 1177-1196.
    Yellappa, T., T. Koizumi and T. Tsunogae (2021). "Geochemical constrains on pyroxenites from Aniyapuram Mafic–Ultramafic Complex, Cauvery Suture Zone, southern India: Suprasubduction zone origin." Journal of Earth System Science 130: 1-24.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE