簡易檢索 / 詳目顯示

研究生: 廖子嘉
Liao, Tzu-Chia
論文名稱: 圓柱座標下石墨烯環形共振腔之有限差分時域法模擬
Simulation of Graphene Ring Resonators in Cylindrical Coordinate by Finite-Different Time-Domain Method
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 石墨烯Hard-BoundarySoft-Boundary環形共振腔表面電漿量子級聯雷射器Drude-model
外文關鍵詞: Graphene, Hard-Boundary, Soft-Boundary, Ring Resonator, Surface Plasmon, FDTD, Quantum Cascaded Laser, Drude-model
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從石墨烯的電導率可先分為Inter-band與Intra-band兩個能帶,分析哪個能帶個別受到低頻或高頻的影響,並了解在何時才會有表面電漿的存在,設定觀察的範圍,在程式模擬的操作上判斷是否可以直接使用FDTD演算法直接帶入,而Intra-band的部分可以使用Drude-mode來做fitting,而分析Inter-band的式子,發現其並不是jω多項式,沒有辦法直接代入,所以只能用本實驗室所開發的一個近似模型來模擬Inter-band的能帶,此模型利用ADE(auxiliary differential equations)來代入FDTD來模擬,透過Dispersion的模擬也能證明此模型與Inter-band的特性極為相符,一開始我們只針對Hard-boundary做模擬,後來我們加上電極,調控石墨烯的nanoribbon,針對特定的ribbon寬度去模擬,我們稱為Soft-boundary,不僅分析上述兩種狀態下的Graphene 其模態和特性,我們也在分析在nanoribbon加上介電質(n=2),來增加其空間中的折射率並觀察其影響,最後在應用上為了實現量子級聯雷射(Quantum Cascade Laser),其為在中、遠紅外範圍的長波段雷射,為了有效將長波段雷射壓縮在共振腔中,因此我們設計一個Ring Resonator利用高等效的折射率來達到我們的目的,並觀察分析其環形的共振模態。

    In this thesis, we analyze the possibility of using graphene as a ring resonator for Quantum Cascade laser. The conductivity of graphene could be divided into intra-band and inter-band. We develop methods to model graphene conductivity for Finite-Difference Time-Domain method. As for the Intra-band, it can be simulated by Drude-model. However, the inter-band cannot be incorporated directly in FDTD since it’s not a polynomial form of jω. Therefore, we used forth-order Pade approximation method to model graphene interband conductivity in FDTD. To design the ring resonator using graphene, we first use the hard-boundary for etched graphene . After that, we use electric field gated graphene to control the nanoribbon of graphene that’s so-called the soft-boundary for graphene conductivity
    We not only analyze the above two situations of Graphene, including its mode and characteristics but also add the dielectric beneath nanoribbon to provide the electric gate. In order to achieve Quantum Cascaded Laser which work in the mid-infrared and far infrared, we designed a Ring Resonator with using high N_eff to confine dozens of micron long wavelength THz mode in the submicron graphene ring resonator effectively.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 符號 XX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究架構 2 第二章 石墨烯與相關理論介紹 3 2-1 表面電漿 3 2-2 石墨烯介紹 6 2-3 石墨烯表面電漿 8 2-4 環形共振腔介紹 13 2-5 Drude Model 14 第三章 數值方法 16 3-1 有限差分法(Finite Difference method) 16 3-2 有限時域差分法(Finite Difference Time Domain) 16 3-3 Ampere’s Law Contour Path Integral 20 3-4 卷積完美匹配層(Convolutional Perfectly Matched Layer) 22 3-5 模擬空間設計 25 第四章 模擬結果與分析 26 4-1 石墨烯電導率 26 4-2 FDTD模擬石墨烯 29 4-3 石墨烯表面電漿 32 4-4 Hard boundary 36 4-5 Soft boundary 48 4-6 Quality Factor 58 4-7 石墨烯加介電質 62 4-8 Graphene環形共振腔 63 第五章 76 5-1 結論 76 5-2 未來展望 77 參考文獻 78

    [1] Kohlschu ̈tter, V. and Haenni, P. “Zur Kenntnis des Graphitischen Kohlensoffs und der Graphitsa ̈ure,” Zeitschrift fur Anorganische und Allgemeine Chemie 105,121-144(1918)
    [2] P.R. Wallace. ”The Band Theory of Graphene,” Physical Review 71, 622(1947)
    [3] Ruess, G., and F. Vogt, “Ho ̈chstlamellarer Kohlenstoff aus Graphitoxyhydroxyd,” Monatshefte fu ̈r Chemie/Chemical Monthy 78(3),222(1948)
    [4] Geim,A. K.,and K. S. Novoselov,”The rise of graphene,” Nanoscience and Technology: A Collection of Reviews from Nature Journal,11(2010)
    [5] Novoselov, K. S.et al. “Electric field effect in atomically thin carbon films,” science 306(5696),666(2004)
    [6] Lemme, Max C., et al. “A graphene field-effect device,” IEEE Electron Device Letters 28(4),282(2007)
    [7] Alaee, Rasoul, et al. “A perfect absorber made of a graphene micro-ribbon metamaterial, “Optics express 20(27),28017 (2012)
    [8] Wood, Robert Williams, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proceedings of the Physical Society of London 18(1),269(1902)
    [9] Fano, Ugo, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” JOSA 31(3),213(1941)
    [10] A, Hessel and A.A. Oliner,”A new theory of Wood’s anomalies on optical gratings,” Applied optics 4(10),1275(1965)
    [11] Junxi Zhang, Lide Zhang and Wei Xu, ”Surface plasom polaritions: physics and applications,” IOP Publishing 45(2012)
    [12] J. C. Meyer, “The structure of suspended graphene sheet,” Nature, 446,60-63(2007)
    [13] Ziyu Ge, Fang Xiao, et al. ”Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry,” International Journal of Biomaterials (2018)
    [14] Mittendorff, Martin, et al. “Ultrafast graphene-based broadband THz detector,” Applied Physics Letters 103(2),021113(2013)
    [15] A. Vakil, “Transformation optics using graphene: One-atom-thick optical devices based on graphene,” Science,332(6035),1291-1294(2011)
    [16] Hassan A. Hafez, Sergey Kovalev, Klaas-Jan Tierooij,et al. ”Terahertz Nonlinear Optics of Graphene:From Saturable Absorption to High-Harmonics Generation,” Optical Mater (2020).
    [17] Zhen-Rong Huang, Ling-Ling Wang, Bin Sun, et al. ”A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” Journal of Optics 16(2014)
    [18] Jun Shibayama, ”Simple Trapezoidal Recursive Convolution Technique for the Frequency-Dependent FDTD Analysis of a Drude-Lorentz Model,” IEEE Photonics Technology letters 21(2),100-102(2009)
    [19] Yee, K, “Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation 14(3),302(1966)
    [20] Berenger, Jean-Pierre, “A perfectly matched layer for the absorption of electromagnetic waves, “ Journal of computational physics 114(2),185(1994)
    [21] Allen Taflove and Susan C. Hagness(2005), Computational Electrodynamics “The Finite-Difference Time-Domain Method,” 3rd ed Artcech House Publishers. ISBN 978-1-58053-832-9
    [22] J.P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics 114(2),185-200(1994)
    [23] J. Alan Roden and S.D. Gedney,”Convolutional PML(CPML) :An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microwave and optical technology letters 27(5),334-339(2000)
    [24] G. W. Hanson, “Dyadic Green;s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, 103, (2008)
    [25] R.P kelisky and T.J. Rivlin, “A rational approximation to the logarithm,” Math. Comp.22 ,128-136(1968)
    [26] E. Forati and G.W. Hanson, “Soft-boundary graphene nanoribbon formed by a graphene sheet above a perturbed ground plane: conductivity profile and SPP model current distribution,” Journal of Optics , (2013)
    [27] E. Forati and G.W. Hanson, “Surface plasmon polaritions on soft-boundary graphene nanoribbons and their application on switching,” Applied Physics Letters 103(13), (2013)
    [28] G. N. Watson, “A Treatise on the Theory of Bessel Functions Second Edition,” Cambridge University Press(1996)

    無法下載圖示 校內:2025-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE