簡易檢索 / 詳目顯示

研究生: 詹秉均
Chan, Ping-Chun
論文名稱: 蘭嶼豬下肢缺血動物模式之研究
The research of hind limb ischemia model in Lanyu pig
指導教授: 黃玲惠
Huang, Lynn L.H.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 下肢缺血蘭嶼豬動物模式血管攝影前後肢血壓比
外文關鍵詞: hind limb ischemia, Lanyu pig, animal models, angiography, hindlimb-forelimb index
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下肢缺血是一種主要由周邊動脈疾病(PAD,Peripheral arterial disease)引起之症狀,其成因為血管堵塞造成血流降低,以至於無法提供身體組織養分以及代謝廢物,最終使該區域組織壞死、喪失功能。在血管堵塞好發部位中,頸動脈堵塞會造成腦部之血流阻斷,會引起腦中風;冠狀動脈堵塞造成心肌梗塞;而在下肢處產生血管堵塞,則引起下肢缺血和造成組織壞死。過去實驗室研究中,在小鼠下肢缺血治療研究上有顯著之成果。對於下肢缺血研究多為小鼠及兔子,使用大動物部分相對較少。而在實驗動物當中,豬的血管結構及生理和人類相似度為最高的,因此選用豬進行下肢缺血治療研究,相較其他動物有其優勢。然而目前豬下肢缺血模式中,進行缺血手術後難以產生類似臨床上下肢缺血病患之症狀。於是,本研究目的為建立有症狀的豬下肢缺血模式。在開創之蘭嶼豬下肢缺血模式中,我們發現以糖尿病豬搭配外腸骨動脈至脛骨動脈栓塞手術,能使缺血下肢產生跛行現象。且手術後第四週血管攝影中顯示外腸骨動脈持續缺血,在都卜勒超音波結果顯示栓塞處動脈無血流訊號。前後肢血壓比中缺血下肢數值較控制組下肢低0.1,並維持四週。此建立的下肢缺血動物模式後續將能應用於疾病治療之研究。

    Hind limb ischemia is a symptom mainly caused by Peripheral arterial disease, which causes blood flow to be reduced due to clogging of blood vessels so that it is unable to provide body tissue nutrients and metabolic waste, which eventually causes tissue necrosis and loss of function. In the vascular occlusion area, blockage of the carotid artery can cause blood flow in the brain to block, which can cause a stroke; coronary artery occlusion causes myocardial infarction; and vascular occlusion in the lower limb causes hind limb ischemia. In the past, our laboratory had achieved remarkable results in the ischemic limb treatment in mice. Most of the studies on hind limb ischemia were mice and rabbits, and the use of large animals was rarely. Among the experimental animals, the vascular structure and physiological of porcine were highly similar in the human. Therefore, the porcine application for hind limb ischemia treatment had advantages over other animals. However, the porcine hind limb ischemia model is difficult to produce symptoms like clinical after ischemic surgery. The purpose of this study was to establish an asymptomatic hind limb ischemia model in pigs. We found that diabetic pigs with external iliac artery to tibial artery embolization surgery can cause claudication in the ischemic limb. In the fourth week after the operation, the angiography showed continued ischemia of the external iliac artery, and the doppler ultrasound showed that there was no blood flow signal at the embolism site. The hindlimb-forelimb index value of the ischemic limb is lower than that of the control group and maintained for four weeks. This established hind limb ischemia model will be applied to the research of disease treatment in the future.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 附表目錄 XIII 附圖目錄 XIV 縮寫表 XV 一、研究背景 1 1-1 周邊動脈阻塞疾病 1 1-2 糖尿病與下肢缺血及足部潰瘍 3 1-3 下肢缺血疾病治療 5 1-4 治療性血管新生對於下肢缺血之影響 5 1-5 下肢缺血動物模式 8 1-6 下肢缺血動物模式之缺血後評估 12 1-7 研究目的 15 二、材料與方法 16 2-1 實驗動物 16 2-2 實驗藥品 16 2-3 實驗器材與儀器 17 2-4 豬隻保定與麻醉 18 2-5 蘭嶼豬下肢缺血手術 18 2-6 血管攝影 20 2-7 都卜勒超音波 21 2-8 前後肢體血壓比 21 2-9 糖尿病蘭嶼豬之誘導 21 2-10 實驗動物犧牲與後續處理 22 2-11 實驗數據統計與繪圖 22 三、結果 24 3-1 蘭嶼豬下肢解剖學 24 3-2 健康豬血管阻斷下肢缺血模式 24 3-3 健康豬血管栓塞下肢缺血模式 25 3-4 健康豬表淺及深股動脈結紮下肢缺血模式 29 3-5 糖尿病豬血管栓塞下肢缺血模式 29 3-6 蘭嶼豬下肢缺血模式比較 33 四、討論 35 4-1 蘭嶼豬下肢解剖學及血管阻斷方法探討 35 4-2 以健康豬阻斷手術下肢血管缺血後之影響 36 4-3 以健康豬栓塞下肢血管後缺血之影響 37 4-4 以糖尿病豬栓塞下肢血管後缺血之影響 38 4-5 缺血手術後評估方法探討 39 4-6 結論與未來研究方向 41 參考文獻 42 圖表 52 附錄 82

    李易,DIB 於糖尿病下肢缺血小鼠治療之研究,國立成功大學生物科技研究所碩士論文,2016。

    梁致文,蘭嶼豬糖尿病模式建立與傷口癒合研究,國立成功大學生物科技研究所碩士論文 ,2017。

    鄭紫妃,改良之DIB膠於小鼠下肢缺血之治療,國立成功大學生物科技研究所碩士論文,2016。

    簡崇美,糖尿病下肢缺血小鼠之治療,國立成功大學生物科技研究所碩士論文,2014。

    Adler, A.I., Boyko, E.J., Ahroni, J.H., and Smith, D.G. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care 22, 1029-1035, 1999.

    Andrews, K.L., Houdek, M.T., and Kiemele, L.J. Wound management of chronic diabetic foot ulcers: from the basics to regenerative medicine. Prosthetics and Orthotics International 39, 29-39, 2015.

    Annex, B.H. Therapeutic angiogenesis for critical limb ischaemia. Nature Reviews Cardiology 10, 387, 2013.

    Aref, Z., de Vries, M.R., and Quax, P.H. Variations in Surgical Procedures for Inducing Hind Limb Ischemia in Mice and the Impact of These Variations on Neovascularization Assessment. International Journal of Molecular Sciences 20, 3704, 2019.

    Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 36, S67-S74, 2013.

    Attanasio, S., and Snell, J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiology in Review 17, 115-120, 2009.

    Auerbach, R., Lewis, R., Shinners, B., Kubai, L., and Akhtar, N. Angiogenesis assays: a critical overview. Clinical Chemistry 49, 32-40, 2003.

    Bauters, C., Asahara, T., Zheng, L.P., Takeshita, S., Bunting, S., Ferrara, N., Symes, J.F., and Isner, J.M. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 91, 2802-2809, 1995.

    Bedarida, G.V., Hoffmann, U., and Tatò, F. Acute lower limb ischemia due to thrombo-embolic arterial occlusions in two previously healthy men with markedly elevated Lp (a). Vascular Medicine 11, 259-262, 2006.

    Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., and Ohtani, K. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710-1713, 2009.

    Brem, H., and Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation 117, 1219-1222, 2007.

    Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813, 2001.

    Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., and Vlassara, H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences of the United States of America 91, 9441-9445, 1994.

    Caputo, G.M., Cavanagh, P.R., Ulbrecht, J.S., Gibbons, G.W., and Karchmer, A.W. Assessment and management of foot disease in patients with diabetes. New England Journal of Medicine 331, 854-860, 1994.

    Chalothorn, D., Clayton, J.A., Zhang, H., Pomp, D., and Faber, J.E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiological Genomics 30, 179-191, 2007.

    Clarkson, P., Celermajer, D.S., Donald, A.E., Sampson, M., Sorensen, K.E., Adams, M., Yue, D.K., Betteridge, D.J., and Deanfield, J.E. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. Journal of the American College of Cardiology 28, 573-579, 1996.

    Collinson, D., and Donnelly, R. Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation? European Journal of Vascular and Endovascular Surgery 28, 9-23, 2004.

    Del Giudice, C., Ifergan, G., Goudot, G., Bellamy, V., Messas, E., Clement, O., Bruneval, P., Menasche, P., and Sapoval, M. Evaluation of a new model of hind limb ischemia in rabbits. Journal of Vascular Surgery 68, 849-857, 2018.

    Dolan, N.C., Liu, K., Criqui, M.H., Greenland, P., Guralnik, J.M., Chan, C., Schneider, J.R., Mandapat, A.L., Martin, G., and McDermott, M.M. Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care 25, 113-120, 2002.

    Duan, J., Murohara, T., Ikeda, H., Sasaki, K.i., Shintani, S., Akita, T., Shimada, T., and Imaizumi, T. Hyperhomocysteinemia impairs angiogenesis in response to hindlimb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 2579-2585, 2000.

    Duvall, C.L., Taylor, W.R., Weiss, D., and Guldberg, R.E. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. American Journal of Physiology-Heart and Circulatory Physiology 287, H302-H310, 2004.

    Ewing, D., and Clarke, B. Diagnosis and management of diabetic autonomic neuropathy. British Medical Journal 285, 916, 1982.

    Faglia, E., Clerici, G., Clerissi, J., Mantero, M., Caminiti, M., Quarantiello, A., Curci, V., Lupattelli, T., and Morabito, A. When is a technically successful peripheral angioplasty effective in preventing above‐the‐ankle amputation in diabetic patients with critical limb ischaemia? Diabetic Medicine 24, 823-829, 2007.

    Fowkes, F., Housley, E., Cawood, E., Macintyre, C., Ruckley, C., and Prescott, R. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. International Journal of Epidemiology 20, 384-392, 1991.

    Gallagher, K.A., Liu, Z.J., Xiao, M., Chen, H., Goldstein, L.J., Buerk, D.G., Nedeau, A., Thom, S.R., and Velazquez, O.C. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. Journal of Clinical Investigation 117, 1249-1259, 2007.

    Goode, T.L., and Klein, H.J. Miniaturization: an overview of biotechnologies for monitoring the physiology and pathophysiology of rodent animal models. Institute for Laboratory Animal Research 43, 136-146, 2002.

    Hiatt, W.R., Hirsch, A.T., Regensteiner, J.G., and Brass, E.P. Clinical trials for claudication: assessment of exercise performance, functional status, and clinical end points. Circulation 92, 614-621, 1995.

    Iglarz, M., Silvestre, J.S., Duriez, M., Henrion, D., and Lévy, B.I. Chronic blockade of endothelin receptors improves ischemia-induced angiogenesis in rat hindlimbs through activation of vascular endothelial growth factor-NO pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 21, 1598-1603, 2001.

    Jennette, J.C., and Falk, R.J. Small-vessel vasculitis. New England Journal of Medicine 337, 1512-1523, 1997.

    Kawamura, A., Horie, T., Tsuda, I., Ikeda, A., Egawa, H., Imamura, E., Iida, J., Sakata, H., Tamaki, T., and Kukita, K. Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation. Therapeutic Apheresis and Dialysis 9, 59-63, 2005.

    Kinlay, S. Outcomes for clinical studies assessing drug and revascularization therapies for claudication and critical limb ischemia in peripheral artery disease. Circulation 127, 1241-1250, 2013.

    Kochi, T., Imai, Y., Takeda, A., Watanabe, Y., Mori, S., Tachi, M., and Kodama, T. Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PloS One 8, e84047, 2013.

    Kolodgie, F.D., Pacheco, E., Yahagi, K., Mori, H., Ladich, E., and Virmani, R. Comparison of particulate embolization after femoral artery treatment with IN. PACT Admiral versus Lutonix 035 paclitaxel-coated balloons in healthy swine. Journal of Vascular and Interventional Radiology 27, 1676-1685, 2016.

    Krishna, S.M., Omer, S.M., and Golledge, J. Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clinical Science 130, 127-150, 2016.

    Kruse, R.R., Doomernik, D.E., Maltha, K.V., Kooloos, J.G., Kozicz, T.L., and Reijnen, M.M. Collateral artery pathways of the femoral and popliteal artery. Journal of Surgical Research 211, 45-52, 2017.

    Labs, K.H., Dormandy, J.A., Jaeger, K.A., Stuerzebecher, C.S., and Hiatt, W.R. Transatlantic conference on clinical trial guidelines in peripheral arterial disease: clinical trial methodology. Circulation 100, e75-e81, 1999.

    Lacci, K.M., and Dardik, A. Platelet-rich plasma: support for its use in wound healing. The Yale Journal of Biology and Medicine 83, 1, 2010.

    Laing, S.T., Moody, M., Smulevitz, B., Kim, H., Kee, P., Huang, S., Holland, C.K., and McPherson, D.D. Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology 31, 1357-1359, 2011.

    Lian, L., Tang, F., Yang, J., Liu, C., and Li, Y. Therapeutic angiogenesis of PLGA-heparin nanoparticle in mouse ischemic limb. Journal of Nanomaterials 2012, 13, 2012.

    Liistro, F., Angioli, P., Grotti, S., Brandini, R., Porto, I., Ricci, L., Tacconi, D., Ducci, K., Falsini, G., and Bellandi, G. Impact of critical limb ischemia on long-term cardiac mortality in diabetic patients undergoing percutaneous coronary revascularization. Diabetes Care 36, 1495-1500, 2013.

    Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H., and Limbourg, F.P. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nature Protocols 4, 1737-1748, 2009.

    Loffroy, R., Guiu, B., Cercueil, J.P., and Krausé, D. Endovascular therapeutic embolisation: an overview of occluding agents and their effects on embolised tissues. Current Vascular Pharmacology 7, 250-263, 2009.

    Lotfi, S., Patel, A.S., Mattock, K., Egginton, S., Smith, A., and Modarai, B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 227, 1-8, 2013.

    Madeddu, P., Emanueli, C., Spillmann, F., Meloni, M., Bouby, N., Richer, C., Alhenc-Gelas, F., Van Weel, V., Eefting, D., and Quax, P. Murine models of myocardial and limb ischemia: diagnostic end-points and relevance to clinical problems. Vascular Pharmacology 45, 281-301, 2006.

    Manninen, H.I., and Mäkinen, K. Gene therapy techniques for peripheral arterial disease. Cardiovascular and Interventional Radiology 25, 98-108, 2002.

    Martin, A., Komada, M.R., and Sane, D.C. Abnormal angiogenesis in diabetes mellitus. Medicinal Research Reviews 23, 117-145, 2003.

    Mcpherson, J.R., Juergens, J.L., and Gifford, R.W. Thromboangiitis obliterans and arteriosclerosis obliterans: clinical and prognostic differences. Annals of Internal Medicine 59, 288-296, 1963.

    Mills, J.L., Conte, M.S., Armstrong, D.G., Pomposelli, F.B., Schanzer, A., Sidawy, A.N., and Andros, G. The society for vascular surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia, and foot infection (WIfI). Journal of Vascular Surgery 59, 220-234, 2014.

    Misch, D.A. Basic strategies of dynamic supportive therapy. Focus 9, 173-268, 2006.

    Mohler, E.R., Sehgal, C.M., Ferrari, V.A., Parmacek, M., Shih, A., and Wilensky, R.L. A novel ultrasound method for evaluation of collateral development in limb ischemia. Vascular Medicine 7, 169-175, 2002.

    Monsky, W.L., Finitsis, S., De Cicco, D., Brock, J.M., Kucharczyk, J., and Latchaw, R.E. A novel mechanical thrombectomy device for retrieval of intravascular thrombus. Cardiovascular and Interventional Radiology 34, 383-390, 2011.

    Moriya, J., Wu, X., Zavala Solorio, J., Ross, J., Liang, X.H., and Ferrara, N. Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice. Journal of Vascular Surgery 59, 1402-1409, 2014.

    Nakatsu, M.N., Sainson, R.C., Aoto, J.N., Taylor, K.L., Aitkenhead, M., Pérez-del-Pulgar, S., Carpenter, P.M., and Hughes, C.C. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvascular Research 66, 102-112, 2003.

    Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G.R., and Liapis, C.D. Inter-society consensus for the management of peripheral arterial disease (TASC II). Journal of Vascular Surgery 45, S5-S67, 2007.

    Ouriel, K. Peripheral arterial disease. The Lancet 358, 1257-1264, 2001.

    Pu, L.Q., Jackson, S., Lachapelle, K.J., Arekat, Z., Graham, A.M., Lisbona, R., Brassard, R., Carpenter, S., and Symes, J.F. A persistent hindlimb ischemia model in the rabbit. Journal of Investigative Surgery 7, 49-60, 1994.

    Ricco, J., Thanh, L.P., Belmonte, R., Schneider, F., Valagier, A., Illuminati, G., and Regnault, G.D.L.M. Open surgery for chronic limb ischemia: a review. Journal of Cardiovascular Surgery 54, 719-727, 2013.

    Rivard, A., Silver, M., Chen, D., Kearney, M., Magner, M., Annex, B., Peters, K., and Isner, J.M. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. The American Journal of Pathology 154, 355-363, 1999.

    Rolland, P., Vidal, V., Mekkaoui, C., Bertrand, M.F., Levrier, O., and Bartoli, J.M. Embolization-driven occlusion of the abdominal aortic aneurysmal sac as the basis of prevention of endoleaks in a new swine model. European Journal of Vascular and Endovascular Surgery 31, 28-35, 2006.

    Rose, G.A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bulletin of the World Health Organization 27, 645, 1962.

    Rushing, A.M., Donnarumma, E., Polhemus, D.J., Au, K.R., Victoria, S.E., Schumacher, J.D., Li, Z., Jenkins, J.S., Lefer, D.J., and Goodchild, T.T. Effects of a novel hydrogen sulfide prodrug in a porcine model of acute limb ischemia. Journal of Vascular Surgery 69, 1924-1935, 2019.

    Seo, H.S., Kim, H.W., Roh, D.H., Yoon, S.Y., Kwon, Y.B., Han, H.J., Chung, J.M., Beitz, A.J., and Lee, J.H. A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain 139, 520-532, 2008.

    Serruys, P.W., Morice, M.C., Kappetein, A.P., Colombo, A., Holmes, D.R., Mack, M.J., Ståhle, E., Feldman, T.E., Van Den Brand, M., and Bass, E.J. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. New England Journal of Medicine 360, 961-972, 2009.

    Shireman, P.K., and Quinones, M.P. Differential necrosis despite similar perfusion in mouse strains after ischemia1. Journal of Surgical Research 129, 242-250, 2005.

    Shweiki, D., Itin, A., Soffer, D., and Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843, 1992.

    Sigvant, B., Wiberg-Hedman, K., Bergqvist, D., Rolandsson, O., Andersson, B., Persson, E., and Wahlberg, E. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. Journal of Vascular Surgery 45, 1185-1191, 2007.

    Silvestre, J.S., Mallat, Z., Duriez, M., Tamarat, R., Bureau, M.F., Scherman, D., Duverger, N., Branellec, D., Tedgui, A., and Levy, B.I. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circulation Research 87, 448-452, 2000.

    Skjeldal, S., Nordsletten, L., Kirkeby, O., Grøgaard, B., Bjerkreim, I., Mowinckel, P., Torvik, A., and Reikerås, O. Perfusion in the anterior tibial muscle measured by laser Doppler flowmetry after graded periods of hindlimb ischemia in rats. International Journal of Microcirculation, Clinical and Experimental 12, 107-118, 1993.

    Sturek, M., Tune, J., and Alloosh, M. Ossabaw Island miniature swine: metabolic syndrome and cardiovascular assessment. Swine in the Laboratory: Surgery, Snesthesia, Imaging, and Experimental Techniques, CRC Press, Boca Raton , 451-465, 2015.

    Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., Amano, K., Kishimoto, Y., Yoshimoto, K., and Akashi, H. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. The Lancet 360, 427-435, 2002.

    Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., and Ingason, A. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638, 2008.

    Tibbles, P.M., and Edelsberg, J.S. Hyperbaric-oxygen therapy. New England Journal of Medicine 334, 1642-1648, 1996.

    Tunis, S.R., Bass, E.B., and Steinberg, E.P. The use of angioplasty, bypass surgery, and amputation in the management of peripheral vascular disease. New England Journal of Medicine 325, 556-562, 1991.

    Varu, V.N., Hogg, M.E., and Kibbe, M.R. Critical limb ischemia. Journal of Vascular Surgery 51, 230-241, 2010.

    Vogt, M.T., Wolfson, S.K., and Kuller, L.H. Lower extremity arterial disease and the aging process: a review. Journal of Clinical Epidemiology 45, 529-542, 1992.

    Whiting, D.R., Guariguata, L., Weil, C., and Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94, 311-321, 2011.

    Wolff, S.P., and Dean, R. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’in diabetes. Biochemical Journal 245, 243-250, 1987.

    Yip, H.K., Sun, C.K., Tsai, T.H., Sheu, J.J., Kao, Y.H., Lin, Y.C., Shiue, Y.L., Chen, Y.L., Chai, H.T., and Chua, S. Tissue plasminogen activator enhances mobilization of endothelial progenitor cells and angiogenesis in murine limb ischemia. International Journal of Cardiology 168, 226-236, 2013.

    Youn, J., Gao, L., and Cai, H. The p47 phox-and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069-2079, 2012.

    Yusuf, S., Zucker, D., Passamani, E., Peduzzi, P., Takaro, T., Fisher, L., Kennedy, J., Davis, K., Killip, T., and Norris, R. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. The Lancet 344, 563-570, 1994.

    Zhang, P., Liang, Y., Kim, H., and Yokota, H. Evaluation of a pig femoral head osteonecrosis model. Journal of Orthopaedic Surgery and Research 5, 15, 2010.

    Zhuang, Z.W., Gao, L., Murakami, M., Pearlman, J.D., Sackett, T.J., Simons, M., and de Muinck, E.D. Arteriogenesis: noninvasive quantification with multi-detector row CT angiography and three-dimensional volume rendering in rodents. Radiology 240, 698-707, 2006.

    Zhuang, Z.W., Shi, J., Rhodes, J.M., Tsapakos, M.J., and Simons, M. Challenging the surgical rodent hindlimb ischemia model with the miniinterventional technique. Journal of Vascular and Interventional Radiology 22, 1437-1446, 2011.

    Zimmerman, D.W. Comparative power of Student t test and Mann-Whitney U test for unequal sample sizes and variances. The Journal of Experimental Education 55, 171-174, 1987.

    無法下載圖示 校內:2024-12-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE