簡易檢索 / 詳目顯示

研究生: 陳建弘
Chen, Chien-Hung
論文名稱: 大尺寸板級球柵陣列構裝之失效與壽命之研究
A Study of Failure and Life of Large Board Level Ball Grid Array Packages
指導教授: 周榮華
CHOU, JUNG-HUA
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 板級高低溫循環球柵陣列封裝錫球失效模式累積塑性形變量模擬
外文關鍵詞: Board level thermal cycling, simulation, Ball Grid Array, failure mode of solder ball, accumulated plastic strain
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究球柵陣列封裝BGA (Ball Grid Array),於板級高低冷熱循環測試BL-TC ( Board Level Thermal Cycling Test )下的失效模式與構裝內各因子的影響力。為此,三個尺寸相同的BGA封裝採用了兩種不同晶片尺寸、兩種封膠材料、兩種黏晶膠、三種基板佈線並完成BL-TC測試。透過韋伯分析得知楊氏係數較高、熱膨脹係數較接近印刷電路板(PCB)的封膠材、較厚的黏晶膠會有較好的可靠度結果;其次為使用較小的晶片。經過剖面分析、紅墨水試驗,可得知失效模式為錫球疲勞導致斷裂,且斷裂面皆在錫球頂部。
    後續透過數值模型計算累積塑性形變量與單向形變量,得知(1) 體積最大的封膠體與晶片對板級高低溫循環影響最大,肇因為熱膨脹係數與楊氏係數。其次為黏晶膠厚度與晶片尺寸。基板線路則影響最小,甚至可以忽略。(2)角落錫球的失效模式為錫球疲勞斷裂且斷裂面呈不規則狀,因其同時承受縱向與橫向形變;晶片底下之錫球則由因晶片底下的熱膨脹係數差異大,導致大的橫向應變,進而讓斷裂面皆位於錫球頂部。而在晶片邊緣底下時,橫向應變達最大值,導致失效分佈皆位於晶片邊緣附近。

    This research examines the failure mode of large Ball Grid Array (BGA) packages after board level thermal cycling (BL-TC) and the relationship of between BL-TC life and package structure. BL-TC was performed on three BGA packages with 15x15x1mm in size. Cross-sectional and penetration tests were performed for failure mode analysis. Numerical simulations were also conducted for failure mechanism analysis.
    From BL-TC tests and numerical simulations, it’s confirmed the relationship between BL-TC life and mold compound, die size, die attach & substrate layout.

    第一章 緒論 1 前言 1 1-1 研究動機 2 1-2 文獻回顧 4 1-2-1 BGA構裝與失效分析文獻 4 1-2-2 BGA黏塑性理論文獻 6 1-3 研究目的(研究方法) 7 第二章 實驗設備 9 2-1 高低溫循環爐 9 2-2 印刷電路板設計 11 第三章 材料性質 13 3-1 線性材料性質 13 3-2 潛變 14 3-3 黏塑性材料 16 3-4 疲勞壽命 19 第四章 實驗方法與步驟 23 4-1 封裝外觀與材料 23 4-2 菊鏈設計 25 4-3 板級高低溫循環實驗結果 27 4-3-1 實驗數據 27 4-3-2 韋伯分布 28 4-3-3 實驗誤差與討論 29 4-3-4 失效分析 31 4-3-5 紅墨水測試 33 4-3-6 紅墨水測試結果與討論 35 4-4 失效分析與討論 37 第五章 失效模式變化與模擬 42 5-1 模型與參數設定 42 5-2 模擬結果與討論 44 第六章 結論與建議 48 參考文獻 52 附錄 – ANSYS模擬與實驗設計 55 1. 模型與材料參數 55 2. 模型驗證 57 3. 實驗設計與結果 58 4. 討論 59

    [1] B. Chandran, D. Goyal, J. Thomas, "Effect of Package Design and Layout on BGA Solder Joint Reliability of an Organic C4 Package," 2000 Electronic Components and Technology Conference, pp. 1205-1214.
    [2] Larry Lin, et al., “Second-Level Interconnects Reliability for Large-die Flip Chip Lead-Free BGA Package in Power Cycling and Thermal Cycling Tests”, 2011 IEEE 61st ECTC, pp. 921-926, 2011.
    [3] D. Karthikeyan, Z. Jiantao, R. Brian, H. Marcus, "Improving Solder Joint Reliability for PoP Packages in Current Mobile Ecosystem", 2018 IEEE 68th ECTC, pp. 1645-1650.
    [4] Richard Coyle, Jim Wilcox, Peter McClure, Michael Meilunas, Richard Popowich, Charmaine Johnson, “The Effect of Die Size on the Thermal Fatigue Reliability and Failure Mode of a Chip Array BGA.”, SMTA International, Dec. 2017.
    [5] Tong Yan Tee, Hun Shen Ng, Z.W. Zhong, “Board Level Solder Joint Reliability Analysis of Stacked Die Mixed Flip-Chip and Wirebond BGA”, Microelectronics Reliability, Vol. 46(12), pp. 2131-2138, 2006.
    [6] Burton Carpenter, “Solder-Joint Reliability of 0.8mm BGA Package for Automotive Applications”, SMTA International, pp. 28-39, 2015.
    [7] S.C. Hung, et al., "Board Level Reliability of Chip Scale Packages", IMAPS, Vol. 23, No. 1, pp. 118-130, 2000.
    [8] M. Andrew, G. Paul, B. Mollie, C. Burt, "Effect of Package Warpage and Composite CTE on Failure Modes in Board-Level Thermal Cycling", SMTA, October 18, 2018.
    [9] Seng Guan Chow, et al., "Board Level Reliability Improvement in eWLB (Embedded Wafer Level BGA) Packages", 2016 11th IMPACT Conference, pp. 139-142.
    SMTA, October 18, 2018.
    [10] Tzeng-Cherng Luo, Meng-Chieh Liao, Te-Chun Huang, Chen-Yu Huang, “Evaluation of Board Level Reliability of BGAs under Thermal Cycling Test”, 2010 5th IMPACT Conference, pp. 1-3.
    [11] Luc Petit, Daniel Yap, “BGA Package Design and Solder Joints Board Level Reliability”, STMicroelectronics, May 2014.
    [12] Seongwon Jeong, et al., “Optimal Design of Dummy Ball Array in Wafer Level Package to Improve Board Level Thermal Cycle Reliability (BLR)”, 2018 IEEE IRPS, pp. P-3D.1-1 - P-3D.1-4, 2018.
    [13] L. Anand. “Constitutive equation for the rate-dependent deformation of metal at elevated temperature”, Transaction of the ASME, Vol.104, pp.12-17, January 1982.
    [14] Cillian Burke, Jeff Punch, "A Comparison of the Creep Behavior of Joint-Scale SAC105 and SAC305 Solder Alloys", IEEE, Vol. 4, No. 3, pp. 516-527, Mar. 2014
    [15] T.T. Nguyen, et al., “Characterizing the Mechanical Properties of Actual SAC105, SAC305, and SAC405 Solder Joints by Digital Image Correlation”, Journal of ELECTRONIC MATERIALS, Vol. 40, No. 6, pp. 1409-1415, 2011.
    [16] M. Amagai, “Characterization of Chip Scale Packaging Materials”, Microelectronics Reliability, Vol. 39, Issue. 9, pp. 1365-1377, 1999.
    [17] Seng Guan Chow, et al., "A Finite Element Analysis of Board Level Temperature Cycling Reliability of Embedded Wafer Level BGA (eWLB) Package", 2012 IEEE 62nd Electronic Components and Technology Conference (EPTC), pp. 1448-1454.
    [18] Seng Guan Chow, et al., "Board Level Solder Joint Reliability Modeling of Embedded Wafer Level BGA (eWLB) Packages", 2011 IEEE 13th Electronics Packaging Technology Conference (EPTC), pp. 674-680.
    [19] T. Anderson, I. Guven, E. Madenci, “The Necessity of Reexamining Previous Life Prediction Analyses of Solder Joints in Electronic Packages”, IEEE ECTC, pp. 1010-1014, 1999.
    [20] R. Raghunathan, S.K. Sitaraman, “Qualification Guidelines for Automotive Packageing Devices”, IEEE Society and Conference on Thermal Phenomena, pp. 385-392, 2000.
    [21] JESD22-A104D, “Temperature Cycling”, JEDEC Solid State Technology Association, 2009.
    [22] JESD22-B111, “Board Level Drop Test Method of Components for Handheld Electronic Products”, JEDEC Solid State Technology Association, 2003.
    [23] The National Board of Boiler and Pressure Vessel Inspectors, www.nationalboard.org/PrintPage.aspx?pageID=181.
    [24] J.H. Lau, “Thermal Stress and Strain in Microelectronics packaging”, Van Nostrand Reinhold, New York, 1993.
    [25] W. Engelmaier, “Functional Cycling and Surface Mounting Attachment Reliability,” ISHM Technical Monograph Series 6894-002, ISHM, 1984, pp. 87-114.
    [26] M.C. Shine,, L.R. Fox, “Fatigue of Solder Joints in Surface Mount Devices”, ASTM STP 942, Low Cycle Fatigue, Philadelphia PA, 1988, pp. 588-610.
    [27] B. Wong, D.D. Helling, R.W. Clark, “A Creep-Rupture Model for Two-Phase Eutectic Solders,” IEEE CHMT, Vol. 11, No. 3, September 1988, pp. 284-290.
    [28] S.E. Yamada, “A Fracture Mechanics Approach to Soldered Joint Cracking,” IEEE CHMT, Vol. 12, No. 1, March 1989, pp. 99-104.
    [29] R. Subrahmanyan, “A Damage Integral Approach for Low-Cycle Isothermal and Thermal Fatigue”, Ph.D. Thesis, Cornell University, 1991.
    [30] A. Dasgupta, C. Oyan, D. Barker, M. Pecht, “Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach,” ASME Journal of Electronic Packaging, Vol. 114, June 1992, pp. 152-160.
    [31] Y.H. Pao, “A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints,” IEEE CHMT, Vol. 15, No. 4, 1992, pp. 559-570.
    [32] J.P. Clech, J.C. Manock, D.M. Noctor, F.E. Bader, J.A. Augis, “A Comprehensive Surface Mount Reliability Model (CSMR) Covering Several Generations of Packaging and Assembly Technology,” Proceeding of, 43rd Electronic Components & Technology Conference, June 1993, pp. 62-71.
    [33] A. R. Syed, “Factors Affecting Creep-Fatigue Interaction in Eutectic Sn/Pb Solder Joints,” Advances in Electronic Packaging 1997, InterPack97, pp. 1535-1542.
    [34] A. R. Syed, “Predicting Solder Joint Reliability for Thermal, Power & Bend Cycle within 25% Accuracy,” 51st ECTC 2001, pp. 255-263.
    [35] A. R. Syed., “Creep Crack Growth Prediction of Solder Joints During Temperature Cycling – An Engineering Approach,” Transactions of the ASME, Vol. 117, June 1995, pp. 116-122.
    [36] R. Darveaux, K. Banerji, A. Mawer, G. Dody, “Reliability of Plastic Ball Grid Array Assembly,” Ball Grid ArrayTechnology, J. Lau, ed., McGraw-Hill, Inc. New York, 1995, pp. 379-442.
    [37] R. Darveaux, “Solder Joint Fatigue Life Model,” Proceedings of TMS Annual Meeting, Orlando FL, February 1997, pp. 213-218.
    [38] R. Darveaux, et al, “Reliability of Plastic Ball Grid Array Assembly,” Chapter 13 in Ball Grid Array Technology, Ed. Lau, J. H., McGraw-Hill, 1995.
    [39] Hari Subramaniam, “Solder Joint Reliability (SJR) under Thermal Cycling”, ANSYS technical document, 2014.
    [40] T.T. Nguyen, D. Yu, and S.B. Park, “Characterizing the Mechanical Properties of Actual SAC105, SAC305, and SAC405 Solder Joints by Digital Image Correlation”, Journal of ELECTRONIC MATERIALS, Vol. 40, No. 6, 2011.
    [41] A. R. Syed, "ACES of Finite Element and Life Prediction Models for Solder Joint Reliability," Design and Reliability of Solders and Solder Interconnections, Proceedings of Symposium 1997 TMS Conference, pp. 347-355.
    [42] Ramasamy Anandan, et al., "Embedded Wafer Level BGA (eWLB) – Extra-small and eLGA Packages", 2011 IEEE 13th Electronics Packaging Technology Conference (EPTC), pp. 412-416.
    [43] Nilesh R. Bhavsar, H. P. Shinde, Mahesh Bhat, "Determination of Mechanical Properties of PCB", International Journal on Mechanical Engineering and Robotics (IJMER), Vol. 2, pp. 23-27. 2013.

    下載圖示 校內:2025-01-19公開
    校外:2025-01-19公開
    QR CODE