簡易檢索 / 詳目顯示

研究生: 呂彥毅
Lu, Yen-Yi
論文名稱: 利用共振腔設計產生徑向與方位角偏振雷射
Generation of radially and azimuthally polarized lasers by using cavity design
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 徑向偏振方位角偏振混沌
外文關鍵詞: radialy polarized beam, azimuthal polarized beam, chaos
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由共振腔設計在c-cut的Nd:YVO4雷射已經可產生出徑向偏振光與方位角偏振光。基於誘發雙折射晶體的正常光與非正常的光程差,且位於穩定區邊界的共振腔結構能實現讓一道光變得不穩定且另一道光仍是穩定的。我們也藉由調整共振腔內透鏡與輸出耦合鏡的距離,便可選擇只有非正常光存在且穩定振盪下產生出徑向偏振光束。而在徑向偏振與方位角偏振的偏振比分別是45.4與29.5。一般雷射操作在特定架構中本質上會輸出圓柱向量光束。此外,我們也增加泵浦功率觀察空間相干的混沌和非線性動態行為和混沌同步的特性作為我們的未來計畫。

    Radially and azimuthally polarized beams were genered in c-cut Nd:YVO4 lasers by using cavity design.Based on the optical path difference between the extraordinary and ordinary ray induced by the birefringence of the crystal, the specific cavity configuration near the boundary of stable region can achieve that one ray becomes unstable and the other ray is still stable. If only the extraordinary ray is stable for the oscillation, the output is a radially polarized beam.
    The contrast ratios of polarization were 45.4 and 29.5 for the radially and azimuthally polarized beams,respectively.Cylindrical vector beam is an intrinsic output characteristic in a general laser as operating at the specific configuration.Moreover,spatial-dependent chaos was observed as increases the pump power,and the nonlinear dynamics and the characteristics of the synchronization are interesting for the future works.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 第一章、序論 1 1.1 背景 1 1.2 研究動機與目標 5 1.3 章節概述 6 第二章、原理 7 2.1圓柱向量光束 7 2.2臨界穩定共振腔與簡併組態 12 2.2-1雷射在共振腔的運作 12 2.2-2穩定共振腔 13 2.3 雙折射效應 16 第三章、理論模擬 19 3.1基本模型ABCD's law 19 3.2光學系統方程式 22 3.3穩定區模擬結果 24 第四章、圓柱向量光束與混沌的基本特性 29 4.1圓柱向量光束偏振實驗 29 4.1-1實驗方法 31 4.1-2偏振的量測 33 4.2偏振混沌實驗 46 4.2-1輸出耦合鏡在腔內位置與混沌訊號的關係 46 4.2-2局部結構間的量測 63 第五章、 結論與未來展望 67 5.1、結論 67 5.2、未來展望 67 參考文獻 69

    [1] Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications
    ,” Adv. Opt. Photon. 1, 1–57 (2009).
    [2] Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [3] Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, “Creation of a three-dimension
    optical chain for controllable particle delivery,” Opt. Lett. 30, 848–850 (2005).
    [4] F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-
    index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26, 2242-2247 (2009).
    [5] V. G. Niziev, and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [6] A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric
    polarization,” J. Phys. D 33, 1817–1822 (2000).
    [7] M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A Mater. Sci. Process. 86, 329–334 (2007).
    [8] Q. Zhan, and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41, 4630–4637 (2002).
    [9] S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
    [10] M. Stalder, and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [11] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9, 78–98 (2007).
    [12] V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneous
    polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45, 8393-8399 (2006).
    [13] R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [14] T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1, 234–236 (2004).
    [15] M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
    [16] I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M^2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32, 47–49 (2007).
    [17] Dieter Pohl, “Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01,” Appl. Phys. Lett. 20, 266-267 (1972).
    [18] Y. ushiake and K. matsumur, “Generation of Radially Polarized Optical Beam Mode by Laser Oscillation,” IEEE. 60, 422-440 (1972).
    [19] K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
    [20] A. Ito, Y.Kozawa, and S. Sato, “Select oscillation of radially and azimuthally
    polarized laser beam induced by thermal birefringence and lensing,” J. Opt. Soc. Am. B.26, 708-712 (2009).
    [21] MP. Thirugnanasambandam, Y. Senatsky, and K. Ichi Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal”, Opt. Express 19, 1905-1914 (2011).
    [22] Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism”, Opt. Lett. 30, 3063-3065 (2005)
    [23] C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipon, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397–2399 (2004).
    [24] G. Machavariani and Y. Lumer, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468-1470 (2007).
    [25] For example, J. M. Senior, Optical Fiber Communications (Prentice Hall,1992)
    [26] D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1996).
    [27] F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.
    64, 491-495 (1987).
    [28] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. (2007).
    [29] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge. Press, 2006).
    [30] 陳志豪, “泵源調制Nd:YVO_4 雷射的非線性動態行為”, 逢甲大學, 碩士論文 (2007).

    下載圖示 校內:2015-07-25公開
    校外:2015-07-25公開
    QR CODE