簡易檢索 / 詳目顯示

研究生: 黃建程
Huang, Jiann-Tseng
論文名稱: 射頻金氧半場效電晶體之模型、特性研究與5.2 GHz低雜訊放大器電路設計
RF MOSFET Modeling, Characterization and 5.2GHz LNA Circuit Design
指導教授: 蘇炎坤
Su, Yan-Kuin
陳良波
Chen, Liang-Po
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 120
中文關鍵詞: 模型化低雜訊放大器射頻
外文關鍵詞: LNA, RF, modeling
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是射頻金氧半場效電晶體之參數萃取與模型的建立,以及對元件特性在射頻應用上之分析。並將該模型實際應用於電路設計上,以驗該模型之可行性。所有射頻金氧半場效電晶體均採用0.18umCMOS 製程技術。De-embedded 技術首先必須被使用以得到正確的量測結果。為了讓電晶體元件更容易應用在射頻電路設計上,我們需要一個既準確又有權威的射頻金氧半場效電晶體模型。BSIM3 模型被證明能符合此要求,因為它能正確地描述射頻金氧半場效電晶體元件並予以數量化。此外,BSIM4 模型改良了BSIM3 模型的缺點與不足亦能達到此要求。
    在論文中,BSIM3 模型和BSIM4 模型分別被驗證於直流與射頻特性,並且兩個模型對量測與模擬的結果均有很不錯的吻合程度。此外,對BSIM3模型和BSIM4 模型的雜訊特性也做了分析與檢驗,其模擬結果也與量測結果大致吻合。最後,設計一個符合IEEE802.11a 規格的5.2GHz 低雜訊放大器以證明所建立的模型之可行性與實用性。並且,對模擬結果做分析與討論。

    This thesis focuses on the extraction of MOS transistor modeling for RF integrated circuit design and reveals critical characteristics for RF application. Circuit verification had also done. The devices fabricated by 0.18um CMOS technology must be measured precisely using advanced de-embedding techniques first. To facilitate the device applications in the RFIC design, an accurate and powerful MOSFET model is required. The BSIM3 model is a good candidate, having demonstrated accuracy and scalability in the devices characteristics. Besides, BSIM4, as the extension of BSIM3 model, has some major improvements and additions over BSIM3. Comparison between the
    BSIM3 model and BIM4 model have been analyzed and discussed. During the procedure of extracting model parameters, the BSIM3 model and BSIM4 model were adopted respectively. The simulation results from DC / RF model show the great agreement with the measured results. Moreover, the noise characteristics of the BSIM3 model and BSIM4 model have been checked and analyzed. Final, a 5.2G low noise amplifier (LNA) conformed IEEE802.11a specification will be designed and the simulation results prove the application of this model for REIC designs. Also, simulated results of LNA is analyzed and discussed.

    Chinese Abstract 4 English Abstract 6 Acknowledgement 8 Contents 9 List of Tables 11 List of Figures 12 Chapter 1 Introduction 16 1-1 Background 16 1-2 Organization 18 Chapter 2 MOSFET DC Model 20 2-1 Introduction 20 2-2 The BSIM3 Model 20 2-3 The BSIM4 Model 22 2-4 Comparison Between BSIM3 and BSIM4 24 2-4.1 Threshold Voltage Modification24 2-4.1 Mobility Model 29 2-4.1 Drain Current and Output Resistance Model 30 2-5 Experimental Results 31 Chapter 3 MOSFET RF Model 36 3-1 Measurement Method 36 3-1.1 S-parameters 36 3-1.2 RF Measurement and De-embedding Techniques 38 3-2 Extraction Method 39 3-2.1 Introduction 39 3-2.2 Comparison Between BSIM3 and BSIM4 40 3-2.2.1 Gate Resistance 41 3-2.2.2 Substrate Resistance 45 3-3 Experimental Results 47 Chapter 4 Noise Characterization and Circuit Design 51 4-1 Noise Characterization 51 4-1.1 Noise Figure 51 4-1.2 Noise Measurement 53 4-1.3 Noise Verification 54 4-2 Circuit Design 55 4-2.1 Design Consideration 55 4-2.2 LNA Circuit Design 56 Chapter 5 Conclusions 59 References 61 Appendix A 65 Appendix B 68

    [1] P. R. Gray and R. G. Meyer, “Future directions in silicon IC’s for RF personal communications,” Proc. IEEE Custom Integrated Circuits Conference, pp.83-90, May 1995.

    [2] M. Jamal Deen and Tor A. Fjeldly, “CMOS RF modeling, characterization and applications,” World Scientific, 2002.

    [3] L. E. Larson, “Integrated circuit technology options for RF IC’s – present status and future directions,” IEEE J. Solid - State Circuits, vol. 33, pp. 387-399, March 1998.

    [4] C. Wann, F. Assaderaghi, L. Shi, K. Chan, S. Cohen, H. Hovel, K. Jenkins, Y. Lee, D. Sadana, R. Viswanathan, S. Wind, Y. Taur, “High-performance 0.07-um CMOS with 9.5-ps Gate Delay and 150GHz fT,” IEEE Electron Device letters, vol. 18, pp.625-627, 1997.

    [5] Y. Cheng et al., “A Physical and scalable BSIM3v3 I-V model for analog/digital circuit simulation,” IEEE Trans. Electron Device, vol. 44, pp. 277-287, Feb. 1997.

    [6] J. –J. Ou, X. Jin, I. Ma, C. Hu and P.Gray, “CMOS RF Modeling for GHz Communication IC’s,” Prof. of the VLSI Symposium on Technology, June 1998.

    [7] MOS9 manual, http://www.semiconductors.philips.com/philips_models.

    [8] Christian C. Enz and Y. Chang, “MOS transistor modeling for RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, Feb 2000.

    [9] Weidong Liu, Xiaodong Jin, Jeff Ou, M. Chan and Chenming Hu,“BSIM4.2.1 MOSFET Model – User’s Manual,” University of California at Berkeley, 2001.

    [10] Y. Chang, C. H. Chen, C. Enz, M. Matloubian, “MOSFET modeling for RF circuit design,” Proceedings of the Second IEEE International Caracas on Devices, Circuits and Systems, pp. D23-1 to D23-8, 2000.

    [11] Thomas H. Lee, “The design of CMOS radio-frequency integrated circuits,” Cambridge, 1998.

    [12] Daniel P. Foty, “MOSFET modeling with SPICE principles and practice,” Prentice Hall, 1997.

    [13] Thomas Gneiting, “Modeling and simulation of deep submicron MOS Transistors using the BSIM3v3 model,” Advanced Modeling Solution, pp. 3-14, July 1997.

    [14] J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P. K. Ko and Chenming Hu, “BSIM3v3.2.2 MOSFET Model – User’s Manual,”University of California at Berkeley, 1999.

    [15] Willian Liu, “MOSFET models for SPICE simulation, including BSIM3 and BSIM4,” John Willey & Sons, pp.399-413, 2001.

    [16] K. Cao et al., “Modeling of pocket implanted MOSFETs, and anomalous analog behavior,” Proc. IEEE International Electron Device Meeting,1999.

    [17] Hanjin Cho and Dorothea E. Burk, “A three-Step method for the de-embedding of high-frequency S-parameter measurements,” IEEE Trans. Electron Device, Vol. 38, no. 6,pp. 1371-1384, 1991.

    [18] D. R. Pehlke, M. Schroter, A. Burstein, M. Matloubian and M. F. Chang,“High-frequency application of MOS compact models and their development for scalable RF MOS Libraries,” Proc. IEEE Custom Integrated Circuits Conference, pp. 219-222, May 1998.

    [19] C. Enz and Y. Cheng, “MOS transistor modeling for RF IC design,”IEEE Journal of Solid-State and Integrated Circuit Technology, pp.186-201, 2000.

    [20] Y. Cheng and M. Matloubian, “High frequency characteristics of gate resistance in RF MOSFETs,” IEEE Electron Device Letters, vol. 22, no. 2, pp. 98-100, 2001.

    [21] W. Liu and M. C. Chang, “Transistor transient studies including transcapacitive current and distributive gate resistance for inverter circuits,” IEEE Trans. On Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp.416-422, 1999.

    [22] X. Jin, J. Ou, C. Chen, W. Liu, P. Gray and C. Hu, “An effective gate resistance model for CMOS RF and noise modeling,” IEEE International Electron Device Meeting, pp. 961-964, 1998.

    [23] W. Liu, R. Gharpurey, M. C. Chang, U. Erdongan, R. Aggarwal and J. P. Mattia, “R.F. MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,”Technical Digest of international Electron Devices Meeting, pp309-312,1997.

    [24] Brian A. Floyd, Jesal Mehta, Carlos Gamero, and Kenneth K. O, “A 900-MHz, 0.8-µm CMOS low noise amplifier with 1.2-dB noise figure”, IEEE Custom Integrated Circuit Conference, pp.661-664, 1999.

    下載圖示 校內:2004-06-26公開
    校外:2004-06-26公開
    QR CODE