| 研究生: |
林育寬 Lin, Yu-Kuan |
|---|---|
| 論文名稱: |
活性碳吸附MTBE及臭氧氧化再生之研究 Regeneration of activated carbon and oxidation of MTBE by ozone |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 吸附 、化學氧化 、甲基第三丁基醚 、臭氧 、Rct 、再生 |
| 外文關鍵詞: | adsorption, chemical oxidation, MTBE, ozone, Rct, regeneration |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各種整治受污染場址方法中,吸附劑透水性處理牆與現地化學氧化是兩種常被探討之整治技術,本研究探討該兩種技術合併使用時之特性。研究中首先探討活性碳對臭氧氫氧自由基轉換率之影響,然後應用臭氧氧化再生活性碳時,其污染物甲基第三丁基醚(methyl tert-butyl ether, MTBE)之去除,最後並探討活性碳吸附MTBE之等溫吸附量的關係以及活性碳的再生效能,以期作為技術應用之可行性依據。
研究結果顯示,隨著臭氧濃度提高以及pH升高,其臭氧轉換氫氧自由基的轉換率Rct值越大,臭氧濃度在1.4 - 4.3 mg/L、pH=5.3 下,Rct值介於5.3 - 9.5×10-10,當pH為6.7時,Rct值則增為2.6 - 16.8×10-9。臭氧與MTBE連續曝氣反應,可以分成揮發與氧化降解兩部分,前者可以用一階降解模擬,速率常數為0.014 min-1;後者則可以用二階降解模擬,速率常數為0.00986 L-mg-1-min-1。臭氧氧化活性碳再生實驗顯示,水中殘餘MTBE及其副產物均非常低,顯示臭氧能有效氧化由吸附劑中釋出之MTBE。活性碳經由臭氧氧化一次後再生吸附量為原先之75%,第二及三次後再生吸附量均為50%,顯示以臭氧進行化學氧化再生活性碳時,可以有效增加原先已經飽和之吸附量,提升吸附劑再使用效率。
Adsorbent based permeable reactive barrier and ozonation are two common methods used in in-situ remediation for organic contaminants. This study is aimed to understand the feasibility of combining the two methods in treating methyl tert-butyl ether (MTBE). Effect of activated carbon (AC) on the formation free radicals during ozonation was first examined. Then, chemical regeneration of MTBE-saturated AC using ozonation was investigated. Finally, the adsorption capacity of MTBE on AC was determined before and after regeneration.
Experimental results show that ozone hydroxyl radical transformation ratio (Rct) increased with increasing ozone concentration and increasing pH. At ozone concentration between 1.4 - 4.3 mg/L, Rct was 5.3 - 9.5×10-10 and 2.6 - 16.8×10-9 for solution pH controlled at 5.3 and 6.7, respectively. The loss of MTBE during ozonation can be divided into two processes, volatilization and destruction. The former one may be simulated by a first-order loss process, with rate constant = 0.014 min-1, while the latter one may be described by a second-order reaction, with rate constant = 0.00986 L-mg-1-min-1. An additional 75%, 50%, and 50% of adsorption capacity was created for the saturated AC, after 1, 2, and 3 times of ozonation regeneration. In addition, only trace concentration of MTBE and its byproducts were detected in the water, suggesting that ozone can not only regenerate the saturated AC but also can properly destruct MTBE. This finding may suggest that ozonation may increase the adsorption capacity of saturated AC, and combination of the two techniques may be worth to explore further for in-situ remediation.
Amarante, D., (2000). Applying in situ chemical oxidation. Pollution Engineering, 32, 40-42.
Barreto, R.D., Gray, K.A., Anders, K., (1995). Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Research, 29, 1243-1248.
Clarke, N., Knowles, G., (1982). High purity water using H2O2 and UV radiation. Effluent and Water Treatment Journal, 22, 335-341.
Davidson, J.M., Greek, D.N., (2000). Using the gasoline additive MTBE in forensic environmental investigations. Environmental Forensics, 1, 31-36.
Elovitz, M.S., Von Gunten, U., (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. the Rct concept. Ozone: Science & Engineering: The Journal of the International Ozone Association, 21, 239 - 260.
Environmental Security Technology Certification Program (ESTCP), (1999). Technology Status Review: In-Situ Oxidation, Http://www.estcp.gov/.
Goulden P.D., Anthony D.H.J., (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Anlytical Chemistry, 50, 953-958.
Graham, J.L., Striebich, R., Patterson, C.L., Radhakrishnan, E., Haught, R.C., (2004). MTBE oxidation byproducts form the treatment of surface waters by ozonation and UV-ozonation. Chemosphere, 54, 1011-1016.
Hoigne, J., Bader, H., (1983). Rate constant of reactions of ozone with organic and inorganic compounds in water – I. Non-dissociating organic compounds. Water Research, 17, 173.
Hoigne, J. and Bader, H., (1996). Rate constant of reactions of ozone with organic and inorganic compounds in water. Water Research, 17.
Hoigne, J., Bader, H., Hagg, W.R., Staehelin, J., (1985). Rate constants of reactions of ozone with organic and inorganic compounds in water –III. Inorganic compounds and radicals. Water Research, 19, 993.
Huling, S.G., Arnold, R.G., Sierka, R.A., Jones, P.K., Fine, D., (2000). Contaminant adsorption and oxidation via Fenton reaction. Journal of Environmental Engeering-ASCE, 126, 595-600.
Huling, S.G., Jones, P.K., Ela, W.P., Arnold, R.G. (2005). Fenton-driven chemical regeneration of MTBE-spent GAC. Water Research, 39, 2145-2153.
Huling, S.G., Jones, P.K., Ela, W.P., Arnold, R.G. (2005). "Repeated reductive and oxidative treatments of granular activated carbon." Journal of Environmental Engineering, 131, 287-297.
Hung, H.W., Lin, T.F. (2006a). Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite. Journal of Hazardous Materials, 135, 210-217.
Johnson, R.L., Lowes, F.J., Smith, R.M. (1964). Evaluation of the use of activated carbons and chemical regenerants in treatment of waste water. US Public Health Service Publication, 999-WP-13, 48.
Jans, U., Hoigné, J., (1998). Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone: Science & Engineering, 67-87.
Koresh, J., (1982). Study of molecular sieve carbons: the Langmuir model in ultramicroporous adsorbents. Journal of Colloid and Interface Science, 88, 398-406.
Kinoshita, K., (1988). Carbon: electrochemical and physicochemical properties. Wiley-Interscience Publication, Wiley, New York 533.
Kommineni, S., Ela W. P., Arnold, R.G., Huilng, S.G., Hester, B.J., Betterton, E.A., (2003). NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science, 20, 361-373.
Leitner, N.K. V., Papailhou, A.L., Croue, J.P., Peyrot, J., Dore, M., (1994). Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide. Ozone: Science & Engineering, 16, 41-54.
Langlias, B., Reckhow, D.A. and Brink, D.R., (1991). Ozone in water treatment application and engineering. Lewis publishers, Inc., Michigan, U.S.A.
Myron, A. Mehlman, (2002). Carcinogenicity of methyl-tertiary butyl ether in gasoline. Annals of the New York Academy of Sciences 982, 149-159.
Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., (2000). Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995-2001.
Mourand, J.T., Crittenden, J.C., Hand, D.W., Perram, D.L., Notthakun, S., (1995). Regeneration of spent adsorbents using homogeneous advanced oxidation. Water Research, 67, 355-363
María, D. Romero-Sánchez, M. Mercedes, P.B., José Miguel M.M, Walzak, M.J., (2005) Addition of ozone in the UV radiation, treatment of A synthetic styrene-butadiene-stryrene(SBS) Rubber. International Journal of Adhesion & Adhesives, 25, 34-44.
McCarty, J.J., Smith, C.H., (1974). A Review of ozone ang it’s application of domestic wastewater treatment. American Water Works Association, 66, 12, 718-726.
Neta, P., Dorfman, L.M., (1968). Pulse radiolysis studies. XIII:Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Australian Journal of Chemistry. 81, 222-230.
Narbaitz, R. M., Cen, J., (1997). Alternative methods for determining the percentage regeneration of activated carbon. Water Research, 31, 2532-2542.
Prengle, H.W., Mauk C.E., (1978). New technology ozone/UV chemical oxidation wastewater process for metal complex, organic species and disinfection. American Institute of Chemical Engineers, 74, 228.
Ruthven, D.M., (1984). Principles of adsorption and adsortion processes. John Wiley and Sons, New York, N.Y.
Rivera-Utrilla, J., Sánchez-Polo, M., Mondaca, M.A., Zaror, C.A., (2002). Effect of ozone/activated carbon treatments on genotoxic activity of naphthalenesulphonic acids. J. Chem. Technol. Biotechnol. 883-890.
Rice, R. G. R., Michael, C., Miller, G., Wade, Hill, Archibald G. (1981). Uses of Ozone in Drinking Water Treatment. American Water works Assocaition, 73, 44-57.
San Miguel, G., Lambert, S.D., Graham, N.J.D., (2001). The regeneration of field-spent granular-activated carbons. Water Research, 35, 2740-2748.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., (2001). Principle and practices of in situ chemical oxidation using permanganate. Battelle Press.
Sánchez-Polo, M., Rivera-Utrilla, J., (2003). Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalentrisulphonic acid with ozone. Carbon, 303-307.
Sánchez-Polo, M., von Gunten, U., Rivera-Utrilla, J., (2005). Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research, 3189-3198.
Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J., von Gunten, U., (2006). Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes. Ozone: Science & Engineering: The Journal of the International Ozone Association, 237 - 245.
Toledo, L.C., Silva, A.C.B., Augusti, R., Lago, R.M., (2003). Application of Fention reagent to regenerate activated carbon saturated with organochloro compounds. Chemosphere, 50, 1049-1054.
USEPA, (2004). Technologies for treating MTBE and other fuel oxygenates. United States Environmental Protection Agency EPA, 542-R-04-009.
Wagler, J.L., Malley, J.P., Jr., (1994). The removal of methyl tertiary-butyl ether from a model ground water using UV/peroxide oxidation. J. NEWWA. September, 236-260.
Weber, W.J., McGinley, P.M., Katz, L.E., (1991). Sorption phenomena in subsurface systems:Concepts models and effects on contaminant fate and transport. Water Research, 25, 499-528.
Westerhoff, P., Rodriguez-Hernandez, M.,Baker, L., Sommerfeld, M., (2005). Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, 4899-4912.
Westerhoff, P., Nalinakumari, B., Peng, P., (2006). Kinetics of MIB and geosmin oxidation during ozonation. Ozone: Science & Engineering: The Journal of the International Ozone Association, 277 - 286.
Yeh, C. K. , Novak J. T., (1995). The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils. Water Research, 67, 828-834.
Yao, C.C.D., Haag, W.R., (1991). Rate constants for direct reactions of ozone with several drinking water contaminants. Water Resarch, 761-773.
劉俊延,2007,「過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究」國立成功大學環境工程學系碩士論文。
方瑋寧,2002,「MTBE好氧分解之可行性研究」,國立中山大學環境工程研究所碩士論文。
張鈞維,2006,「以淨水泥及鐵氧化物吸附劑去除水庫水體含磷之研究」,國立成功大學環境工程學系碩士論文。
黃世峰,2001,「以臭氧/紫外光去除印刷電路板電鍍液中亞甲基二奈碘酸鈉之研究」,國立台灣大學環境工程學研究所碩士論文。
陳佳郁,2005,「臭氧與氯對水中微生物殺菌效果之評估」,國立台灣大學環境衛生研究所碩士論文。
顧洋,1995,「紫外線/臭氧氧化程序在廢水處理上之應用」,工業污染防治。
陳郁仁,2001,「前氧化劑對藻類去除影響之研究」,國立成功大學環境工程研究所碩士論文。
李明潔,2008,「臭氧對兩種產臭藍綠菌菌體破壞及其代謝物釋出之研究」,國立成功大學環境工程研究所碩士論文。
行政院勞工委員會,2008,物質安全資料表。
行政院環境保護署相關資料,2004,汽油添加劑MTBE(甲基第三丁基醚)之環境污染特性,http://www.epa.gov.tw.
行政院環境保護署,2009,公告之毒性化學物質一覽表.。http://www.epa.gov.tw/ch/SitePath.aspx?busin=324&path=1702&list=1702.
行政院環境保護署,2009,全國加油站及大型儲槽土壤及地下水污染潛勢調查. http://sgw.epa.gov.tw/public/0502.asp.