簡易檢索 / 詳目顯示

研究生: 朱珮瑜
Chu, Pei-Yu
論文名稱: 基於影像對相對方位之近景攝影測量於振動位移量測之應用
Application of close-range photogrammetry based on relative orientation of image pair to vibration displacement measurement
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 影像對相對方位射影幾何共面式共線式近景攝影量測
外文關鍵詞: image pair, relative orientation, coplanarity, collinearity, close-range photogrammetry
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在基於近景攝影測量(close-range photogrammetry)發展非接觸性之振動位移量測技術,由兩不同角度拍攝同一目標物之影像,便可利用影像對(image pair)間之相對方位(relative orientation)關係解算相對空間點座標。所用之解算方式是基於射影幾何之共面式(coplanarity condition)搭配共線式(collinearity condition),其中,共面式以線性方程可快速求解空間點初始值,而有利於動態影像連續分析,且計算過程僅需要使用相機內方位參數,而後續共線式之解算則可以將誤差最小化。首先,根據共面式搭配共線式之原理,以Python程式語言建置一共軛影像處理程式,用以解算兩圖像之共軛點於空間之座標;接著,將程式實際應用於靜態尺寸測量及動態振動位移分析,分別以實際案例進行驗證,包括以消費級相機拍攝一建築物並進行靜態分析,以及利用工業級攝影機於振動台試驗過程中高速連續拍攝試體並進行動態分析;前者用以確認基於共面式搭配共線式解算空間點座標的可行性及設置編碼標之需求,後者則是振動位移量測之實際應用,藉由與其他可信之量測儀器所得結果間的相關性,來評估本研究所發展方法之精度,並歸納實務應用上的限制。根據測試結果可知,應用本方法時編碼標採非平面配置之解算精度遠高於採平面配置,於靜態分析中在量測距離約3.5 m、編碼標點間距約20 cm左右之平均相對誤差約0.45%;動態分析中在距離試體約13.5 m、可拍攝到之試體長寬約 3 m (W) × 4.5 m (H),當試體振動位移振幅約100 mm以上時與參考量測值之相關係數可達0.95以上,振動位移振幅達200 mm以上時相關係數更達0.99以上,驗證本方法適用於公分級振動位移之量測,如振動台地震模擬試驗之結構反應。

    This study aimed to obtain the spatial coordinates of the conjugate points of image pair using the concept of relative orientation in close-range photogrammetry. The algorithm which defines the optical constraint between image space and object space used in was based on the coplanarity condition of projective geometry accompanied with the collinearity condition. According this algorithm, the Python programming language was adopted to develop an application program named Conjugate Image Processing Program. This program can process a specific image pair for static measurement of dimensions as well as a continuous sequence of image pairs for dynamic measurement of vibration. In the static application, the accuracy of measurement at different configurations of targets for detection as the conjugate points was discussed, whereas in the dynamic application the correlation between the measured vibration displacement by Conjugate Image Processing Program and that by other reliable methods was examined. Results showed that a non-planar configuration of targets led to better accuracy than a planar one, and the proposed program was verified to be capable of centimeter-level vibration measurement, such as the structural response in large-scale shaking table tests.

    摘要 I ABSTRACT II 致謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 2 1.2.1 研究方法 2 1.2.2 研究流程 4 1.3 論文架構 5 第二章 文獻回顧 6 2.1 射影幾何 6 2.2 齊次座標空間系統 7 2.3 共面式與共線式 8 2.4 商用軟體PHOTOMODELER 10 2.4.1 自動環形編碼標 10 2.4.2 相機率定 11 2.5 相關性分析 12 2.5.1 互相關 12 2.5.2 決定係數(R2) 12 2.5.3 訊噪比 15 2.5.4 皮爾森積動差相關係數 15 第三章 解算理論與共軛影像處理程式 17 3.1 解算理論 17 3.1.1 相機內方位參數 17 3.1.2 共面式 19 3.1.3 相依相對方位 22 3.1.4 共線式 28 3.2 程式功能 31 3.3 靜態分析使用流程 35 3.4 測試案例:對擋土牆之裂縫進行靜態影像對分析 37 3.5 動態分析使用流程 41 第四章 靜態影像分析案例實測 43 4.1 影像拍攝設備 43 4.2 實驗流程 48 4.3 測試案例一:航測館頂樓 50 4.3.1 場地介紹 50 4.3.2 PhotoModeler軟體解算空間點 51 4.3.3 以共軛程式解算不同配置之編碼標 53 4.4 測試案例二:剪力盒 58 4.4.1 以共軛程式解算不同配置之編碼標 58 4.4.2 以共軛程式解算手動選點之編碼標 62 4.5 綜合討論 65 第五章 動態影像分析案例實測 66 5.1 測試案例介紹 66 5.1.1 測試案例一:大型剪力試驗盒 66 5.1.2 測試案例二:高樓縮尺模型 70 5.2 實驗流程 72 5.3 測試案例一:大型剪力盒振動台試驗 75 5.3.1 剛性結構振動台試驗–簡諧激振試驗 76 5.3.2 剛性結構振動台試驗–地震模擬試驗 82 5.4 測試案例二:高樓縮尺模型試驗 94 5.5 綜合討論 102 第六章 結論與建議 103 6.1 結論 103 6.2 建議 105 參考文獻 106

    1. Bracewell, R. Pentagram Notation for Cross Correlation. The Fourier Transform and Its Applications. New York: McGraw-Hill, pp. 46 and 243.1965.
    2. Britannica, T. Editors of Encyclopaedia, Jean-Victor Poncelet. Encyclopedia Britannica. https://www.britannica.com/biography/Jean-Victor-Poncelet.2021.
    3. Chien, J. Beginner’s guide to fundamental matrix, essential matrix and camera motion recovery. 2016.
    4. Handayani, H. Space intersection by collinearity. Geoid, 5(2), 105-109. doi:10.12962/j24423998.v5i2.7339. 2010.
    5. Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Nature, no. 291, vol. 5828. 1981.
    6. Mohr, R., & Triggs, B. Projective geometry for image analysis. XVIIIth International Symposium on Photogrammetry & Remote Sensing (ISPRS ’96), Jul, Vienna, Austria. Inria-00548361. 1996.
    7. Mikhail, M., Bethel, S., and McGlone, J.C. Introduction to modern photogrammetry. ISBN: 0-471-30924-9, Ch. 4, Ch. 5, Ch. 9.2001.
    8. Rodgers, J. L., & Nicewander, W. A. Thirteen Ways to Look at the Correlation Coefficient. The American Statistician, 42(1), 59–66. https://doi.org/10.2307/2685263.1988.
    9. Smith, D. E. History of Modern Mathematics. Lit2Go Edition.1906.
    10. Steel, R. G. D., & Torrie, J. H. Principles and Procedures of Statistics with Special Reference to the Biological Sciences. McGraw Hill. 246-247.1960.
    11. Walford, A. One Part in 300,000. Precision and accuracy discussion. EOS Inc., 2006.
    12. Yung-Yen Ko, Jen-Yu Han and Jun-Yun Cho. Application of close-range photogrammetry for post-failure Reconnaissance of a Retaining Wall. NCREE Newsletter, vol. 10, 1. 2015.
    13. 康明昌,古希臘幾何三大問題,數學傳播,中央研究院數學研究所發行,第八卷第二期,1984。
    14. 鄭傑文,射影幾何於攝影量測之應用,國立臺灣大學碩士論文,2007。
    15. 賴建邑,以影像技術進行結構物相對幾何變遷偵測,國立臺灣大學土木工程學研究所碩士論文,2013。
    16. 盧煉元、胡宣德、林子堯、林柏樺,減震技術於離岸風力發電支撐結構之應用研究,結構工程期刊、第三十一卷、第一期、第 99-130 頁、表3,2016。
    17. 林照捷,以解算連續像對相對方位參數之單眼視覺里程計,航測及遙測學刊、第二十四卷、第2期,2019。
    18. 鄭崑硯,土壤液化對地下維生管線影響之振動台試驗研究—建築物近端管線,國立成功大學碩士論文,2022。

    下載圖示 校內:2025-03-31公開
    校外:2025-03-31公開
    QR CODE