| 研究生: |
蘇冠緯 Su, Guan-Wei |
|---|---|
| 論文名稱: |
摩擦攪拌製程對4832鋁合金振動破壞特性影響之研究 Effects of Friction Stir Processing on Vibration Fracture Characteristics of 4832 Aluminum Alloy |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 摩擦攪拌製程 、振動 、鋁合金 |
| 外文關鍵詞: | friction stir process, vibration, aluminum alloy |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁-矽合金具有良好加工性、耐蝕性佳、熱膨脹係數低等優點,因此在工業應用上相當廣泛。本研究選用的4832鋁合金為鋁-矽-銅-鎳-鎂合金,常用於汽車元件。然而元件在運轉狀態下常處於振動環境,因此振動破壞的阻抗是應用層面上必須面對的課題。在本研究中採用摩擦攪拌製程(Friction Stir Process, FSP),探討材料在經過改質後,對於振動破壞阻抗能力的影響。4832鋁合金除了基地組織α-Al外,主要觀察到的晶出相為矽顆粒、δ(Al3CuNi)、τ1(Al9FeNi)、Q(Al5Cu2Mg8Si6)等。本材料在經過摩擦攪拌後,能夠讓矽顆粒及原本聚集的δ-τ1(-Q)分布變均勻,攪拌區的硬度也有提升。由振動試驗的數據顯示,在固定振動出力值以及固定試片初始偏移量的條件下,FSP材振動壽命優於O材及FSP-O材。將摩擦攪拌製程對於材料振動壽命的影響分成基地狀態以及晶出相分布型態兩方面進行探討:當基地狀態相近,而晶出相分布型態不同的條件比較(O材與FSP-O材),改變晶出相型態對於材料振動壽命的提升效果有限;當基地狀態不同,而晶出相分布型態相近的條件比較(FSP材與FSP-O材),摩擦攪拌強化基地對於振動壽命的提升效果較顯著。在此認為:摩擦攪拌製程對於材料振動壽命提升的主導因素為基地強化效應。
依改質區域取樣方向不同,針對FSPpara及FSPperp進行振動破壞裂紋解析,FSPpara的裂紋傳播與攪拌流紋相似,均呈弧狀樣貌。而FSPperp的裂紋則與攪拌流紋垂直,經過裂紋特徵定量化解析,FSPperp的振動壽命高於FSPpara,而裂紋轉折程度比較也呈現同樣情形,因此認為攪拌流紋排列方向(洋蔥環效應)影響振動裂紋傳播阻抗能力,為兩者振動壽命差異的原因。
Al-Si alloy is widely used for industrial applications due to its fine workability, high corrosion resistance, and low thermal expansion coefficient, etc. The 4832 aluminum alloy, which is Al-Si-Cu-Ni-Mg alloy system, is used for automobile components. However, the components are often in vibration condition while operating. Therefore, it is inevitable to deal with the issue of vibration fracture. In this study, friction stir process (FSP) is taken to discuss the effect upon vibration fracture resistance after modifying 4832 aluminum alloy.
In addition to α-Al matrix, there are four main segregate phases in 4832 aluminum alloy, including Si particles, δ(Al3CuNi), τ1(Al9FeNi) and Q(Al5Cu2Mg8Si6). After processing, Si particles and the agglomerate δ-τ1(-Q) are uniformly distributed, and the hardness of stirred zone also increased. According to the resultants of vibration tests, FSP sample exhibits better vibration life than O and FSP-O in the constant force condition and constant initial deflection condition. Investigation on the effect of friction stir process is divided into two aspects: the status of matrix and distribution condition of segregate phases. Comparing O with FSP-O: when the statuses of matrix are close, and let segregate phases distributed uniformly, the improvement of vibration life is limited. On the contrary, when we compare FSP sample with FSP-O: If the distribution situation of segregate phases are similar, the matrix intensified by friction stir process would be significant in enhancing vibration life. Therefore, the strengthening of matrix is considered the dominant factor in improving vibration life by friction stir process.
Based on the different sampling direction of modifying region, the vibration crack of FSPpara and FSPperp are analyzed respectively. The crack propagation of FSPpara is arc-like and parallel to the flow pattern caused by friction stir process. Crack propagation of FSPperp is perpendicular to the flow pattern.
The vibration life of FSPperp is better than FSPpara. According to the quantitative analysis about characteristic of vibration crack, the amplitude of crack reflection of FSPperp is also higher than FSPpara. It is thought that flow pattern (onion ring effect) could affect the resistance of crack propagation, which could be the reason for the variance of vibration life between FSPpara and FSPperp.
F. T. Lee, J. F. Major and F. H. Samuel, “Effect of Silicon Particles on the Fatigue Crack Growth Characteristics of Al-12%Mg-(0-0.02)% Sr Casting Alloys”, Metall. Mater. Trans. A, Vol.26, pp.1553-1570, 1995.
2. T. Kobayashi, M. Minomi and K. Ikeda, “Fatigue Crack Propagation in Al-Si Alloy Castings”, J. Japan Inst. of Light Metals, Vol.37, pp.824-830.
3. Y.Nakayama, K.Sugawara and N.Olinishi, “Effect of Microsturcture on Mechanical Properties of Al-4%Si-0.4%Mg Casting Alloy”, J. Japan Inst. of Light Metals, Vol.48, pp.501-506, 1998.
4. J.E.Hatch, “Aluminum Properties and Physical Metallurgy”, American Society for Metals, Ohio,p.106, 1984.
5. Metals Handbook, “Metallography, Structures and Phase Digrams”, American Society for Metals, Vol.8, 8th ed, p.263, 1973.
6. M. Tagami and Y. Eertia, “Fracture Toughness of Al-7%Si-0.5%Mg Alloy Castings”, J.Japan Inst. of Light Metals, Vol.30, pp. 390-393, 1980.
7. N. A. Belov, D. G. Eskin and A. A. Aksenov, “Multicomponent Phase
Diagram: Applications for Commercial Aluminum Alloys”, Oxford, Elsevier, 2005.
8. M. M. Farag and M. C. Flmings, “Structure and Strength of Al, Cu, Al3Ni Directionally Solidfied Composites”, Metall. Trans. A, Vol.6, pp.1009-1015, 1975.
9. B. J. Bayles, J. A. Ford and M. J. Salkind, “The Effect of Evaluated Temperature Exposed on the Microstructure and Tensile Strength of Al-Al3Ni Whisker-Reinforced Aluminum”, Trans. AIME, Vol.239, pp.844-849, 1967.
10. N.Terao, “Beneficial Influence of Copper and Manganese Alloying Elements on the Mechanical Properties of Metallic Composite Material Based on the Eutectic Al-5.7% Ni Alloy”, J. Mater. Sci., Vol.20, pp.4021-4026, 1985.
11. 黃中佐,「鋁合金高溫變形阻抗陡降臨界溫度之銅、矽及鎳效應探討」,國立成功大學材料科學及工程學系,碩士論文,民國92年。
12. 張云瀚,「A384鋁合金沖蝕磨耗特性之摩擦攪拌效應探討」,國立成功大學材料科學及工程學系,碩士論文,民國98年。
13. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr and A. C. Nunes, “Flow Patterns During Friction Stir Welding”, Materials Characterization, Vol.49, pp. 95-101, 2003.
14. Y. Li, L. E. Murr and J. C. McClure, “Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum Alloy to 6061 Aluminum Alloy”, Materials Science and Engineering: A, Vol.271, pp. 213-223, 1999.
15. J. Q. Su, T. W. Nelson and C. J. Sterling, “Microstructure Evolution during FSW/FSP of High Strength Aluminum Alloys”, Materials Science and Engineering: A, Vol.405, pp. 277-286, 2005.
16. Y. S. Sato, M. Urata, H. Kokawa and K.Ikeda, “Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys”, Materials Science and Engineering: A, Vol.354, pp.298-305, 2003.
17. W. B. Lee, Y. M. Yeon, and S. B. Jung, “The Improvement of Mechanical Properties of Friction stir Welded A356 Alloy”, Materials Science and Engineering: A, Vol.355, pp.154-159, 2003.
18. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol.8, pp. 2216-2223, 1993.
19. 孫慶鴻、張啟軍,「振動與噪音的阻尼控制」,機械工業出版社,38-57頁,1992年。
20. 黃振賢,「機械材料」,新文京開發出版社,436-444頁,民國88年。
21. J. M. Zhang, R. J. Perez, C. R. Wong, and E. J. Lavernia, “Effects of Secondary Phases on the Damping Behavior of Metals, Alloys and Metal Matrix Composites”, Materials Science and Engineering: R, Vol.13, pp.325-389, 1994.
22. S. S. Rao, “Mechanical Vibrations”, 2nd ed., Addision-Wesley Publishing Company, Inc, pp.4-160,1990.
23. 莊凱傑,「摩擦攪拌製程對AZ31鎂合金拉伸及振動破壞特性影響之研究」,國立成功大學材料科學及工程學系,碩士論文,民國96年。
24. 洪佳和,「亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討」,國立功大學材料科學及工程學系博士論文,民國90年。
25. 江東昇,「亞共晶鋁-矽(-鎂)合金之共振裂縫傳播行為研究」,國立成功大學材料科學及工程學系,博士論文,民國87年。
26. D. Taylor, “Fatigue Threshold”, Butterworth and Co. Ltd, pp.71-91,1989.
27. S. Suresh, “Fatigue of Materials”, Cambridge University Press, p.292, New York, 1991.
28. D. Broek, “Elementary Engineering Fracture Mechanics”, Martinus Nijhoff Publishers, pp.158-163, The Netherlands, 1984.
29. D. M. Knowles and J. E. King, “Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propagation in Particulate SiC Reinforced Aluminum Alloy 8090”, Material Science Technology, Vol.8, pp.500-509, 1992.
30. O. Botstein, R. Arone, and B. Shpigler, “Fatigue Crack Growth Mechanisms in Al-SiC Particulate Metal Matrix Composites”, Materials Science and Engineering: A, Vol.128, pp15-22, 1990.
31. Y. Sugimura and S. Suresh, “Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced with SiC Particles”, Metall. Mater. Trans. A, Vol.23, pp.2231-2242, 1992.
32. J. N. Hall, J. W. Jones and A. K. Sachdev, “Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 Aluminum-SiCp Composites”, Material Science and Engineering: A, Vol.183, pp.69-80, 1994.
33. N. Chawla, C. Andres, J. W.Jones and J. E. Allison, “Effects of SiC Volume Fraction and Particle Size on the Fatigue Resistance of 2080 Aluminum-SiCp Composite”, Metall. Mater. Trans. A, Vol.29, pp.2843-2854, 1998.
34. J. K. Shang and R. O. Ritchie, “On the Particulate-Size Dependence of Fatigue Crack Propagation Thresholds in SiC Particulate Reinforced Aluminum Alloy Composites: Role of Crack Closure and Crack Trapping”, Acta Metall., No.8, Vol.37, pp.2267-2278, 1989.
35. J. K. Shang, W. Yu and R. O. Ritchie, “Role of Scilicon Carbide Particles in Fatigue Crack Growth in SiC-Particulate-Reinforced Aluminum Alloy Composites”, Materials Science and Engineering: A,Vol.102, pp.181-192, 1988.
36. 黃國聰,「鋁-鎂合金拉伸與振動破壞特性之摩擦攪拌效應研究」,國立成功大學材料科學及工程學系,博士論文,民國97年。
37. F. Nascimento, T. Santos, P. Vilaça, R. M. Miranda and L. Quintino,
“Microstructural Modification and Ductility Enhancement of Surfaces Modified by FSP in Aluminium Alloys”, Materials Science and Engineering: A, Vol.506, pp. 16-22, 2009.
38. K. N. Krishnsn, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering: A, Vol.327, pp. 246-251, 2002.
39. D. S. Jiang, T. S. Lui, and L. H. Chen, “Effect of Aging on the Crack Propagation of A356 Alloy Under Resonant Vibration”, Mater. Trans., Vol.41, pp.499-506, 2000.
40. D. Lados, D. Apelian, P. Jones and J. Major, “Microstructural Mechanisms Controlling Fatigue Crack Growth in Al–Si–Mg Cast Alloys”, Materials Science and Engineering: A, Vol.468-470, pp. 237-245, 2007.
41. J. M. Song, T. Y. Lin, H. Y .Chuang, “Microstructure Characteristics and Vibration Fracture Properties of Al-Mg-Si Alloys with Excess Cu and Ni”, Mater. Trans., Vol.48, pp. 854-859, 2007.
42. A. J. Moffat, B. G. Mellor, C. L. Chen, R. C. Thomson, P. A. S. Reed, “Microstuctural Analysis of Fatigue Initiation in Al-Si Casting Alloy”, Materials Science Forum, Vols.519-521, pp.1083-1088, 2006.
校內:2013-07-28公開