| 研究生: |
孫憲琪 Sun, Hsien-chi |
|---|---|
| 論文名稱: |
濕砂模與金屬界面之熱傳模式研究暨鑄造充填的模擬分析 Study on Heat Transfer Models at Mold-Metal Interface and Filling Simulation for Green Sand Mold Casting |
| 指導教授: |
趙隆山
Chao, Long-sun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 砂模鑄造 、模與金屬界面 、熱傳分析 、反算法 、間隙 |
| 外文關鍵詞: | heat transfer analysis, sand mold casting, gap, mold-metal interface, inverse method |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在濕砂模鑄造過程之熱傳模式分析中,砂模與金屬界面熱傳情形是一關鍵性的問題,若無法妥善地處理此界面條件,會直接影響分析的結果。由於濕砂模與鑄件間非為緊密接觸,在模與金屬界面之熱傳方析中,需要一界面熱傳係數h來估算金屬的界面熱束,但是界面熱傳係數是一個未知值,無法單純以實驗或理論的方法獲得,目前的研究都是使用逆運算法算出界面熱傳係數。不過在金屬凝固時之潛熱釋放與濕砂模中之水份的汽化和水蒸氣之凝結會造成溫度計算的困難,如果在凝固時有過冷產生,其計算的困難度就更高,因此本文提出總容量法、外插法、修正總容量法和銅塊法,以簡易之方式估算出砂模與金屬界面熱通量及界面熱傳係數,以利於鑄造凝固過程的熱傳分析。並利用FIDAP軟體模擬分析整個鑄件鑄造過程,在凝固熱傳分析方面可以驗證修正總容量法、總容量法和外插法的可行性。另外,也運用FIDAP模擬分析鑄件在澆注時的流場和充填情形,可作為澆鑄溫度和速度與排氣設計的參考,因而可避免產生充填不足或孔洞等缺陷。
In the heat-transfer analysis of a green sand mold casting process, how to grasp the heat-transfer condition at the sand-mold/metal interface is a key problem. Not manipulated properly, it will directly affect the final result of the analysis. Because it is not perfect contact at the interface, the analysis needs an interfacial heat transfer coefficient to compute the heat fluxes from the metal to the sand mold at the interface. The heat transfer coefficient for a given casting process is unknown. No general formulas or easy ways can be applied to obtain the heat transfer coefficient for any kinds of mold/metal interface. In the literature, inverse methods were generally applied to estimate the interfacial heat transfer coefficient. However, the latent-heat release of metal solidification and the evaporation heat of moisture and the condensation of vapor in the sand mold make the calculations of inverse methods difficult to compute interfacial heat transfer coefficients, especially for those solidification processes having a significant undercooling and recalescence phenomena. To overcome this difficulty, the lump capacitance and extrapolation and modified lump capacitance and copper chunk methods are proposed in this study to calculate the interfacial heat transfer coefficient for the casting process in a green sand mold. Moreover, the resulting interfacial heat transfer coefficients were put into the FIDAP software to compute the temperature fields of casting during the solidification processes. The computed complete solidification time and cooling curves are quite similar to the experimental ones. Besides, the FIDAP simulation of a filling process can help us to understand the flow field during the process, which can assist the mold design and the quality control of a casting process.
[1] Jordon, C., Hill, J. L. and Piwonka, T. S., “Computer Designed Gating Systems : Promises and Problems,” AFS Trans., Vol. 96, pp. 603-610 (1988).
[2] Ruhul Amin, M., and Gawas, Nikhil L., “Conjugate Heat Transfer and Effects of Interfacial Heat Flux During the Solidification Process of Continuous Castings,” ASME J. Heat Transfer, Vol. 125, pp.339-348 (2003).
[3] Wei, P. S., and Yeh, F. B., “Heat Transfer Coefficient in Rapid Solidification of a Liquid Layer on a Substrate,” ASME J. Heat Transfer, Vol. 122, pp.792-800 (2000).
[4] Henzel, J. G. and Jr., “Temperature Loss from Gating System,” AFS Trams., Vol. 74, pp. 365-370 (1966).
[5] Davis, K. G. and Magny, J. G., “Computer-Aided Riser Calculations for Steel Castings,” AFS Trans., Vol. 92, pp. 73-82 (1984).
[6] Shumakov, N. V., “A Method for the Experimental Study of the Process of Heating a Sold Body,” SOVIET Physics-Technical Physics (translated by Institute of Physics), Vol. 2, pp.771 (1957).
[7] Sparrow E. M., Haji-Sheikh, A. and Lundgren, T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., vol. 86e, pp. 369-375 (1964).
[8] Stolz, G. Tr., “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes”, ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb. (1960).
[9] Beck J. V., “Calculation of Surface Heat Flux from an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46 (1962).
[10] Beck, J.V., "Surface Heat Flux Determination Using an Integral Method," Nucl. Eng. Des., Vol. 7, pp. 170-178 (1968).
[11] Beck, J. V. and Wolf, H., “The Non-lineat Inverse Heat Conduction Problem.” ASME J. Heat Transfer, No. 65-HT-40 (1965).
[12] Beck, J.V., "Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem," International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716 (1970).
[13] Beck, J.V., Litkouhi, B., and St. Clair, C.R., "Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem," Numerical Heat Transfer, Vol.5, pp. 275-286 (1982).
[14] Tseng A., Chen, T. C., and Zhao, F. Z., “Direct Sensitivity Coefficient Method for Solving Two-Dimensional Inverse Heat Conduction Problems by finite-elementScheme, “Num.Heat Transfer, Part B, Vol.27, pp291-307 (1995).
[15] Huang, C.H. and Yan J.Y., “An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity,” Int. J. Heat Mass Transfer, Vol. 38, No. 18, pp. 3433-3441 (1995).
[16] 紀欽仁, “逆向熱傳方法之材料熱性質預測,”國立成功大學工科所碩士論文 (1998)
[17] 郭孟遠, “材料凝固熱性質之估算,”國立成功大學工科所碩士論文 (1999)
[18] 林立勝, “凝固熱性質之估算,”國立成功大學工科所碩士論文 (2000)
[19] Krutz, G. W., Schoenhals, R. J. and Hore, P. S., “Application of The finite-Element Method to The Inverse Heat Conductivity Problem,” Num. Heat Transfer, Vol. 1, pp. 489-498 (1978).
[20] Krzysztof, G., Cialkowski, M, J. and Kaminski, H., “An Inverse Temperature Field Problem of The Theory of Thermal Stresses,” Nucl. Eng.Des., Vol. 64, pp. 169-184 (1981).
[21] D’Souza N,, “Numerical Solution of One-dimensional Inverse Transient Heat Conduction by Finite Difference Method,” ASME J. Heat Trnsfer, No. 75-WA/HT-81 (1975).
[22] Ho,S.and Pehlke, R. D., “Metal-Mold Interfacial Heat Transfer,” Metallurgical B, Vol. 16B, pp. 585-594 (1985).
[23] Marek, C.T., “Transformation Zone in Green Sand,” AFS Trans., Vol. 71, pp. 185-192 (1965).
[24] Kubo, K.and Pehlke, R. D., “Heat and Moisture Transfer in Sand Molds Containing Water,” Metallurgical B, Vol. 17B, pp. 903-911 (1986).
[25] Tsia, H.L., Chiang K.C. and Chen, T. S., “Movement of Moisture Front and Alloy Solidification in Green sand Casting,” AFS Trans., Vol. 96, pp. 191-196 (1988).
[26] Shih, T.S., Hsiau, S.S. and Hong, C. H., “Movement of Vaporization Interface and Temperature Distributions in Green sand Molds,” AFS Trans., Vol. 104, pp. 481-489 (1996).
[27] Zeng, X. C. and Pehlke, R. D., “Analysis of Heat Transfer at Metal-Sand Mold Boundaries and computer Simulation of Solidification of a Gray Iron Casting,” AFS Trans., Vol. 93, pp. 275-282 (1985).
[28] Hou, T. X. and Pehlke, R. D., “Determination of Mold-Metal Interfacial Heat Transfer and Simulation of Solidification of Aluminum-13% Silicon Cast,” AFS Trans., Vol. 94, pp. 129-136 (1986).
[29]鍾尚浩,”鑄造灌模及凝固解析模式之改良及其相關實驗技術之研究發展”,博士論文,國立成功大學 (1992)。
[30] Nishida, Y., Droste, W. and Engler, S., “The Air-Gap Formation Process at the casting Mold Interface and the Heat Transfer Mechanism through the Gap,” Metall. Trans., Vol. 17B, pp. 833-844 (1986).
[31]吳政翰,”半固態鎂合金與模具鋼SKD61界面熱傳導係數之涼測”,碩士論文,國立成功大學 (2005)。
[32] Santos, C. A., Quaresma, J. M. V., W. and Garcia, A., “Determination of transient interfacial heat transfer coefficients in chill mold casting,” Journal of Alloys and compounds., Vol. 319, pp. 174-186 (2001).
[33] Chiesa, F., “Measurement of the Thermal Conductionce at the Mold Metal Interface of Permanent Molds,” AFS Trans., Vol. 98, pp. 193-200 (1990).
[34] Sun, H. C. and Chao, L. S., “An Investigation into the Effective Heat Transfer Coefficient in the Casting of Aluminum in a Green-Sand Mold,” Mate. Trans., Vol. 50, NO. 6, pp. 1396-1403 (2009).
[35] Sun, H. C. and Chao, L. S., “Analysis of Interfacial Heat Transfer Coefficient of Green Sand Mold Casting for Aluminum and Tin-Lead alloys by Using a lump Capacitance Method,” ASME J. Heat Trnsfer, Vol. 129, pp. 1753-1758 (2007).
[36] Sun, H. C. and Chao, L. S., “Prediction of Interfacial Heat Transfer Coefficient by Using a Modified Lump Capacitance Method for Aluminum Casting in a Green Sand Mold,” ISIJ, Vol. 47, No. 11, pp. 595-600 (2007).
[37] Nichols, B. D., Hirt, C. W., and Hotchkiss, R. S., “SOLA-VOF:A Soluation Algorithm for Transient Fluid Flow with Multiple Free Boundries,” Tech.l Report LA-8355, Los Alamos Scientific Laboratory (1980).
[38] Hirt, C. W., and Nichols, B. D., “Volume of fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., Vol. 39, pp. 201-225 (1981).
[39] Engelman, M. S., “FIDAP 8.62 Theorem Manual,” Fluent Inc., New Hampshire, U.S.A. (1982).