| 研究生: |
劉奐甫 Liu, Huan-Fu |
|---|---|
| 論文名稱: |
介金屬R3Co4Sn13(R= La, Ce, Pr, Yb)之單晶製成及核磁共振之研究 Single crystal synthesis and nuclear magnetic resonance study of R3Co4Sn13 (R= La, Ce, Pr, Yb) intermetallics |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電子態密度與能帶結構 、金屬化合物 、核磁共振 |
| 外文關鍵詞: | Electron density of states and band structure of crystalline solids, Intermetallic compounds, Nuclear magnetic resonance and relaxation |
| 相關次數: | 點閱:104 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
籠狀結構的三元錫化物因為存在有趣的電性與磁性現象,例如:重費米子、超導、混合原子價、多重磁性相變以及三維電荷密度波不穩定,近年來在理論及實驗方面都已被廣泛的研究。在本篇論文中我們討論了三元錫化物R3Co4Sn13 (R = La, Ce, Pr, Yb)的單晶成長、比熱、磁化率、59Co以及119Sn的核磁共振研究。各個樣品成功地以自體助熔劑法成長。在La3Co4Sn13、Ce3Co4Sn13以及Pr3Co4Sn13這三個樣品中分別在溫度152 K、155 K以及138 K觀察到明顯的結構性相變。而且這三個樣品的59Co四重極頻率在溫度低於相變溫度時明顯的減少,顯示鈷原子感受到的電場梯度隨著相變的發生而減弱。這個現象可以歸因於結構中Sn(2)原子在低溫時的位移所導致,並且對費米面附近的電子結構產生顯著的影響。我們也量測了Sn(1)與Sn(2)的119Sn核磁共振頻譜,然而只有Ce3Co4Sn13的Sn(2)原子的119Sn核磁共振頻譜在溫度低於相變溫度明顯變寬。此外Ce3Co4Sn13的奈特位移對磁化率的分析指出Sn2原子感受到的超精細耦合作用隨著相變的發生而增強。然而La3Co4Sn13與Pr3Co4Sn13的Sn(2)原子在不同溫度下的119Sn核磁共振頻譜顯示相變對線形並沒有顯著的影響。這個結果與119Sn核磁共振頻譜以及奈特位移分析一致。另外Yb3Co4Sn13的比熱以及核磁共振量測並沒有發現有結構性相變的現象。而且其59Co的奈特位移以及自旋-晶格鬆弛速率的結果顯示該樣品是一個Pauli順磁體。由Korringa 關係式 (constant T1T),我們推算出Yb3Co4Sn13的Co 3d軌域費米能階態密度為3.95 states/eV f.u.
Ternary stannides with the cage-filled structure have been widely studied theoretically and experimentally due to the existence of interesting electronic and magnetic properties, such as Heavy fermions, superconductivity, mixed-valence behavior, complicated magnetism, as well as three-dimensional charge-density-wave (CDW) instability. In this thesis, we report single crystal growth and a systematic study of ternary stannides R3Co4Sn13 (R = La, Ce, Pr, Yb) including the specific heat, magnetic susceptibility, as well as 59Co and 119Sn nuclear magnetic resonance (NMR) measurements. Each sample had been grown successfully by the Sn self-flux method. Distinctive phenomena associated with the structural phase transition have been identified for La3Co4Sn13, Ce3Co4Sn13 and Pr3Co4Sn13 at T* ~ 152 K, ~155 K and ~ 138 K, respectively. For those materials, relative weak 59Co quadrupole splittings are consistently found below T*, implying that the electrical field gradient (EFG) sensed by the Co site decreases undergoing this phase transition. Such an observation could be attributed to the local distortion of the Sn(2) atom from its initial position below T* which consequently leads to significant modification of the electronic structures around the Fermi surfaces. We also obtained a resolved 119Sn NMR spectrum on each compound. However, only 119Sn NMR line shape of Sn(2) for Ce3Co4Sn13 becomes broaden obviously, and the peak feature smears below T*. In addition, its 119Sn NMR Knight shift versus magnetic susceptibility indicates an enhancement on the hyperfine coupling constant on Sn(2) across the phase transition. Furthermore, the evolution of 119Sn NMR line shape at various temperatures for La3Co4Sn13 and Pr3Co4Sn13 reveals a rather slightly modulation sensed by Sn(2) site for both compounds when crossing the transition consistent with each 119Sn NMR line shapes and Knight shift analyses. For Yb3Co4Sn13, however, the specific heat and NMR results show the absence of the structural-related phase transition. The 59Co NMR Knight shift and spin-lattice relaxation rate 1/T1 clearly indicate that Yb3Co4Sn13 is a Pauli-type paramagnet. Based on the Korringa relation (constant T1T), we thus estimated Co 3d Fermi-level density of states Nd(EF) ~ 3.95 states/eV f.u. for this compound.
[1] G. P. Espinosa, Mater. Res. Bull. 15, 791 (1980).
[2] Z. Fisk, S. E. Lambert, M. B. Maple, J. P. Remeika, G. P. Espinosa, A. S. Cooper, H. Barz, and S. Oseroff, Solid State Commun. 41, 63 (1982).
[3] G. P. Espinosa, A. S. Cooper, and H. Barz, Mater. Res. Bull. 17, 963 (1982).
[4] H. Sato, T. Fukuhara, S. Iwakawa, Y. Aoki, I. Sakamoto, S. Takayanagi, and N. Wada, Physica B 186–188, 630 (1993).
[5] A. Rojek, C. Sułkowski, and K. Rogacki, Physica C: Superconductivity 223, 111 (1994).
[6] C. V. Tomy, G. Balakrishnan, and D. M. Paul, Phys. Rev. B 56, 8346 (1997).
[7] Y. Mudryk, A Grytsiv, P. Rogl, C. Dusek, A. Galatanu, E. Idl, H. Michor, E. Bauer, C. Godart, D. Kaczorowski, L. Romaka, and O. Bodak, J. Phys.: Condens. Matter 13 (2001).
[8] C. Nagoshi, H. Sugawara, Y. Aoki, S. Sakai, M. Kohgi, H. Sato, T. Onimaru, and T. Sakakibara, Physica B 359–361, 248 (2005).
[9] M. A. Pires, L. M. Ferreira, J. G. S. Duque, R. R. Urbano, O. Agüero, I. Torriani, C. Rettori, E. M. Bittar, and P. G. Pagliuso, J. Appl. Phys. 99, 08J311 (2006).
[10] E. Lyle Thomas, H.-O. Lee, A. N. Bankston, S. MaQuilon, P. Klavins, M. Moldovan,
D. P. Young, Z. Fisk, and J. Y. Chan, J. Solid State Chem. 179, 1642 (2006).
[11] Y. Ōduchi, C. Tonohiro, A. Thamizhavel, H. Nakashima, S. Morimoto, T. D. Matsuda,
Y. Haga, K. Sugiyama, T. Takeuchi, R. Settai, M. Hagiwara, and Y. Ōnuki, J. Magn. Magn. Mater. 310, 249 (2007).
[12] J. Custers, M. Kriegisch, M. Müller, A. Thamizhavel, A. M. Strydom, and S. Paschen, Physica B 403, 1312 (2008).
[13] J. Yang, B. Chen, C. Michioka, and K. Yoshimura, J. Phys. Soc. Jpn. 79, 113705 (2010).
[14] N. Kase, H. Hayamizu, K. Inoue, and J. Akimitsu, Physica C: Superconductivity 471, 711 (2011).
[15] N. Kase, H. Hayamizu, and J. Akimitsu, Phys. Rev. B 83 (2011).
[16] A. Ślebarski, B. D. White, M. Fijałkowski, J. Goraus, J. J. Hamlin, and M. B. Maple, Phys. Rev. B 86 (2012).
[17] K. Wang and C. Petrovic, Phys. Rev. B 86 (2012).
[18] S. Y. Zhou, H. Zhang, X. C. Hong, B. Y. Pan, X. Qiu, W. N. Dong, X. L. Li, and S. Y. Li, Phys. Rev. B 86 (2012).
[19] A. Ślebarski and J. Goraus, Phys. Rev. B 88 (2013).
[20] A. V. Morozkin, V. Y. Irkhin, and V. N. Nikiforov, J. Alloys Compd. 549, 121 (2013).
[21] J. R. L. Mardegan, N. Aliouane, L. N. Coelho, O. Aguero, E. M. Bittar, J. C. Lang, P. G. Pagliuso, I. L. Torriani, and C. Giles, IEEE Trans. Magn. 49, 4652 (2013).
[22] L. E. Klintberg, S. K. Goh, P. L. Alireza, P. J. Saines, D. A. Tompsett, P. W. Logg, J. Yang, B. Chen, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. 109 (2012).
[23] A. F. Fang, X. B. Wang, P. Zheng, and N. L. Wang, Phys. Rev. B 90 (2014).
[24] P. K. Biswas, A. Amato, R. Khasanov, H. Luetkens, K. Wang, C. Petrovic, R. M. Cook, M. R. Lees, and E. Morenzoni, Phys. Rev. B 90, 144505 (2014).
[25] S. K. Goh, D. A. Tompsett, P. J. Saines, H. C. Chang, T. Matsumoto, M. Imai, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. 114, 097002 (2015).
[26] R. Sarkar, F. Brückner, M. Günther, K. Wang, C. Petrovic, P. K. Biswas, H. Luetkens, E. Morenzoni, A. Amato, and H. H. Klauss, Physica B 479, 51 (2015).
[27] A. Ślebarski, Philos. Mag. 95, 467 (2014).
[28] D. C. Schmitt, N. Haldolaarachchige, D. P. Young, R. Jin, and J. Y. Chan, Z. Anorg. Allg. Chem. 637, 2046 (2011).
[29] A. Ślebarski, M. Fijałkowski, J. Goraus, L. Kalinowski, and P. Witas, J. Alloys Compd. 615, 921 (2014).
[30] A. Ślebarski, M. M. Maśka, M. Fijałkowski, C. A. McElroy, and M. B. Maple, J. Alloys Compd. 646, 866 (2015).
[31] C. N. Kuo, H. F. Liu, C. S. Lue, L. M. Wang, C. C. Chen, and Y. K. Kuo, Phys. Rev. B 89 (2014).
[32] C. N. Kuo, C. W. Tseng, C. M. Wang, C. Y. Wang, Y. R. Chen, L. M. Wang, C. F. Lin, K. K. Wu, Y. K. Kuo, and C. S. Lue, Phys. Rev. B 91, 165141 (2015).
[33] L. M. Wang, C.-Y. Wang, G.-M. Chen, C. N. Kuo, and C. S. Lue, New J. Phys. 17, 033005 (2015).
[34] O. E. Aguero, (University of Campinas, Brazil 2006.
[35] G. Zhong, X. Lei, and J. Mao, Phys. Rev. B 79 (2009).
[36] W. L. McMillan, Physical Review 167, 331 (1968).
[37] A. Ślebarski, M. Fijałkowski, M. M. Maśka, M. Mierzejewski, B. D. White, and M. B. Maple, Phys. Rev. B 89 (2014).
[38] S. van, Acta Crystallogr., Sect. A 61, 51 (2005).
[39] P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).
[40] A. Ślebarski, P. Witas, J. Goraus, L. Kalinowski, and M. Fijałkowski, Phys. Rev. B 90, 075123 (2014).
[41] L. Mendonça-Ferreira, E. M. Bittar, I. K. E. Bianchi, P. F. S. Rosa, Z. Fisk, and P. G. Pagliuso, J. Phys. Conf. Ser. 592, 012046 (2015).
[42] J. R. Collave, H. A. Borges, S. M. Ramos, E. N. Hering, M. B. Fontes, E. Baggio-Saitovitch, L. Mendonça-Ferreira, E. M. Bittar, and P. G. Pagliuso, J. Appl. Phys. 117, 17E307 (2015).
[43] C. P. Slichter, Principles of magnetic resonance (Springer-Verlag, New York, 1990), Vol. 1, Springer series in Solid-State Sciences.
[44] A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press: Oxford University Press, London, 1982).
[45] G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic Shifts in NMR, A review of theory and comprehensive critical data compilation of metallic materials (Oxford ; New York : Pergamon Press, 1977), 1st edn.
[46] N. Bloembergen and T. J. Rowland, Acta Metall. 1, 731 (1953).
[47] W. Jones, T. Graham, and R. Barnes, Physical Review 132, 1898 (1963).
[48] C. S. Lue, J. Lin, and B. Xie, Phys. Rev. B 73 (2006).
[49] C. S. Lue, Y. Lin, and C. Kuo, Phys. Rev. B 75 (2007).
[50] N. M. Wolcott, R. L. Falge, L. H. Bennett, and R. E. Watson, Phys. Rev. Lett. 21, 546 (1968).
[51] R. Sarkar, P. Khuntia, C. Krellner, C. Geibel, F. Steglich, and M. Baenitz, Phys. Rev. B 85, 140409 (2012).
[52] J. Ross, Z. Wang, and C. Slichter, Phys. Rev. B 41, 2722 (1990).
[53] P. Butaud, P. Ségransan, C. Berthier, J. Dumas, and C. Schlenker, Phys. Rev. Lett. 55, 253 (1985).
[54] T. Kubo, Y. Kizaki, H. Kotegawa, H. Tou, Y. Nagano, N. Araoka, A. Mitsuda, and H. Wada, JPS Conf. Proc. 3, 017031 (2014).
[55] C. Kittel, Introduction to solid state physics (John Wiley & Sons, Inc, 2004).
[56] C. Kittel and E. Abrahams, Physical Review 90, 238 (1953).
[57] W. D. Knight, Physical Review 76, 1259 (1949).
[58] C. H. Townes, C. Herring, and W. D. Knight, Physical Review 77, 852 (1950).
[59] A. M. Clogston, V. Jaccarino, and Y. Yafet, Physical Review 134, A650 (1964).
[60] A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet, Phys. Rev. Lett. 9, 262 (1962).
[61] B. Nowak and O. J. Żogał, Solid State Nucl. Magn. Reson. 1, 251 (1992).
[62] B. Nowak, Solid State Nucl. Magn. Reson. 21, 53 (2002).
[63] T. Asada, K. Terakura, and T. Jarlborg, J. Phys. F 11, 1847 (1981).
[64] E. Fukushima and S. B. W. Roeder, Experimental Pulse NMR: A Nuts and Bolts Approach (Addison-Wesley, Reading, Mass., 1981).
[65] E. L. Hahn, Physical Review 80, 580 (1950).
[66] R. R. Ernst and W. A. Anderson, Rev. Sci. Instrum. 37, 93 (1966).
[67] A. Narath, Physical Review 162, 320 (1967).
[68] W. W. Simmons, W. J. O'Sullivan, and W. A. Robinson, Physical Review 127, 1168 (1962).
[69] http://www.varianinc.com.
[70] http://www.oxford-instruments.com.
[71] http://www.cryocon.com.
[72] http://www.lakeshore.com.
[73] C. Israel, E. M. Bittar, O. E. Agüero, R. R. Urbano, C. Rettori, I. Torriani, P. G. Pagliuso, N. O. Moreno, J. D. Thompson, M. F. Hundley, J. L. Sarrao, and H. A. Borges, Physica B 359-361, 251 (2005).
[74] M. Imai, A. Sato, T. Aoyagi, T. Kimura, Y. Matsushita, and N. Tsujii, J. Am. Chem. Soc. 130, 2886 (2008).
[75] N. Tsujii, T. Furubayashi, H. Kitazawa, and G. Kido, J. Alloys Compd. 393, 41 (2005).
[76] M. H. Cohen and F. Reif, Solid State Physics (Academic Press Inc., New York, 1957), Vol. 5, 332 p.^pp. 333.
[77] A. Rubens, B. deCastro, and R. Schumacher, Phys. Rev. B 7, 105 (1973).
[78] G. S. Tripathi, L. K. Das, P. K. Misra, and S. D. Mahanti, Phys. Rev. B 25, 3091 (1982).
[79] H. F. Liu, C. N. Kuo, C. S. Lue, K. Z. Syu, and Y. K. Kuo, Phys. Rev. B 88 (2013).
[80] B. H. Suits and C. P. Slichter, Phys. Rev. B 29, 41 (1984).
[81] C. S. Lue, C. F. Chen, F.-K. Chiang, and M. W. Chu, Phys. Rev. B 80 (2009).
[82] G. N. Rao, Hyperfine Interact. 7, 141 (1979).
[83] G. H. Spikes, J. R. Giuliani, M. P. Augustine, I. Nowik, R. H. Herber, and P. P. Power, Inorg. Chem. 45, 9132 (2006).
[84] A. Ślebarski, J. Goraus, and P. Witas, Phys. Rev. B 92, 155136 (2015).
[85] C. M. Tseng, C. H. Chen, and H. D. Yang, Phys. Rev. B 77, 155131 (2008).
[86] M. H. Lee, C. H. Chen, M. W. Chu, C. S. Lue, and Y. K. Kuo, Phys. Rev. B 83 (2011).
[87] Y. K. Kuo, K. Sivakumar, T. Su, and C. S. Lue, Phys. Rev. B 74 (2006).