簡易檢索 / 詳目顯示

研究生: 黃佑庭
Huang, You-Ting
論文名稱: 磁場偶極引發之非線性霍爾效應和異向磁阻效應 : 二維電子氣之解析解
Nonlinear Hall Effect and Anisotropic Magnetoresistance Driven by Magnetic-field Dipole: Analytical Solutions for Two-dimensional Electron Gases
指導教授: 張景皓
Chang, Ching-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 50
中文關鍵詞: 非線性霍爾效應異向磁阻效應磁場偶極
外文關鍵詞: nonlinear Hall effect, anisotropic magnetoresistance, magnetic-field dipole
相關次數: 點閱:52下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超越傳統霍爾效應的非線性霍爾效應 (nonlinear Hall effect) 長期以來一直是凝聚態物理中具有高應用潛力的重要研究領域。與此同時,異向磁阻效應 (Anisotropic magnetoresistance) 亦為該領域的一個重要現象,具有多樣化的應用。盡管這些效應的實際應用層出不窮,理論模型卻仍不完整。本研究致力於彌合一些理論上的現有差距。傳統上,這兩種現象都與材料的內部細節相關,如磁學性質,晶體結構和電子結構:廣泛討論的非線性霍爾效應是由貝里曲率 (Berry curvature) 偶極子引起的,這將現象限制在幾類具有超低晶格對稱性的材料中;而異向磁阻效應通常是由於材料中磁矩排列導致的電子各向異性散射引起的。這項工作中,我們引入了與以往研究有顯著不同的兩個方面:首先,我們聚焦於最簡單的各向同性材料:二維電子氣。因此我們所獲得的結果與材料細節無關,它們純粹是由我們故意創造的幾何不對稱引起。其次,我們利用實空間中的磁場,而非貝里曲率,來產生這些現象。我們將磁場設置為與空間座標 x 成正比,從負值延伸到正值。利用解量子諧振子的算符方法 (operator formalism) 和我們開發的磁化率公式,我們對更高階的霍爾效應進行了解析計算。此外,我們採用對角化方法,計算了更接近真實實驗條件的系統,即外加均勻磁場的彎曲奈米帶。我們的研究發現此系統中存在非線性霍爾效應和異向磁阻效應。

    Nonlinear Hall effects extending beyond the conventional ones have long been a significant area of research with high application potential in condensed matter physics. Simultaneously, anisotropic magnetoresistance has also been regarded as an important phenomenon in this field, offering versatile applications. While practical applications of these effects abound, theoretical understanding still lags behind. This work is our dedication to bridge some of the existing gaps in theory. Traditionally, both phenomena are linked to the internal details of materials, such as magnetic properties, crystal structure, and electronic structure. The wildly discussed nonlinear Hall effect is induced by the Berry curvature dipole, which limits the phenomenon to a few classes of materials with ultralow lattice symmetry. On the other hand, anisotropic magnetoresistance is typically caused by the anisotropic scattering of electrons due to the alignment of magnetic moments in the material. In this work, we introduce two significant departures from previous studies. First, we focus on the simplest and isotropic material: two-dimensional electron gases. Hence, the obtained results in our work are independent of material details, as they are solely induced by our intentionally created geometric asymmetry. Second, we utilize the actual magnetic field in real space, rather than the Berry curvature, to generate these phenomena. We orient our magnetic-field dipole linearly along the x-axis, spanning from negative to positive values. Utilizing the operator formalism used for solving the quantum harmonic oscillator and our developed susceptibility formulae, we analytically calculate Hall effects in higher order. Additionally, we employ the diagonalization approach method to numerically compute the case of homogeneous external magnetic fields applied to nanoribbons, aligning more closely with experimental conditions. Our findings reveal both nonlinear Hall effect and anisotropic magnetoresistance in such systems.

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv Chapter 1. Introduction 1 Chapter 2. Literature Review 3 Introduction to two-dimensional electron gas 3 Basic concepts 3 Assumptions and idealizations 3 Realizations 4 Anisotropic magnetoresistance 4 Hall effect 5 The semi-classical model 9 Motions of charged particles in magnetic fields 9 Classical explanation of the conventional Hall effect 10 Gaps in the Literature: Geometry-induced anisotropic magnetoresistance Nonlinear Hall effects induced by real-space magnetic-field dipole 13 Chapter 3. System Design and Theory 14 The nanostructures and magnetic-field dipole 14 Mathematica 16 Magnetic field term in Schrödinger equation 17 Diagonalization approach 19 Operator formalism 19 Susceptibility formulae 21 Chapter 4. Results and Discussion 23 Semicircular 2DEG ribbons in the sinusoidal effective magnetic field 23 Band structure and the classical corresponds 24 Probability density distribution 25 Conductance and the AMR effect 28 Extension: 2DEG nanotube 30 The linearly increasing magnetic-field dipole case 32 The linearly increasing magnetic-field dipole in Schrödinger equation 32 Band structure and the classical corresponds 33 Probability density distribution 33 The Hall conductivity 35 Chapter 5. Conclusion 38 The Importance of the findings 38 Recommendations and future directions 39 References 40

    [1] I. Sodemann and L. Fu, “Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials,” Phys. Rev. Lett., vol. 115, p. 216806, Nov 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.216806
    [2] C.-P. Zhang, X.-J. Gao, Y.-M. Xie, H. C. Po, and K. T. Law, “Higherorder nonlinear anomalous hall effects induced by berry curvature multipoles,”Phys. Rev. B, vol. 107, p. 115142, Mar 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.107.115142
    [3] W. Thomson, “Xix. on the electro-dynamic qualities of metals:—effects of magnetization on the electric conductivity of nickel and of iron,” Proceedings of the Royal Society of London, vol. 8, pp. 546–550, 1857. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1856.0144
    [4] B. Huang, A. G. Moghaddam, J. I. Facio, and C.-H. Chang, “Resonant nonlinear hall effect in two-dimensional electron systems,” Phys. Rev. B, vol. 104, p. 165303, Oct 2021. [Online]. Available: ttps://link.aps.org/doi/10.1103/PhysRevB.104.165303
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1102896
    [6] M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, “Topology-scaling identification of layered solids and stable exfoliated 2d materials,” Phys. Rev. Lett., vol. 118, p. 106101, Mar 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett. 118.106101
    [7] P. M. Levy, S. Zhang, and A. Fert, “Electrical conductivity of magnetic multilayered structures,” , vol. 65, no. 13, pp. 1643–1646, Sep. 1990.
    [8] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B, vol. 39, pp. 4828–4830, Mar 1989. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.39.4828
    [9] E. H. Hall, “On a new action of the magnet on electric currents,” American Journal of Mathematics, vol. 2, no. 3, pp. 287–292, 1879. [Online]. Available: http://www.jstor.org/stable/2369245
    [10] D. Tong, “Lectures on the quantum hall effect,” 2016.
    [11] I. Lo, W. C. Mitchel, R. E. Perrin, R. L. Messham, and M. Y. Yen, “Twodimensional electron gas in gaas/al1−xgax as heterostructures: Effective mass,”Phys. Rev. B, vol. 43, pp. 11 787–11 790, May 1991. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.43.11787
    [12] S. Yang and J. Zhang, “Current progress of magnetoresistance sensors,” Chemosensors, vol. 9, p. 211, 08 2021.
    [13] D. Neamen, Semiconductor Physics And Devices, 3rd ed. USA: McGraw-Hill, Inc., 2002.
    [14] G. Gracia and B. Pimentel, “Quantum hall effect: from the drude conductivity model to the chern-simons field description,” Revista Brasileira de Ensino de Física, vol. 45, 06 2023.
    [15] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, “Anomalous hall effect,” Rev. Mod. Phys., vol. 82, pp. 1539–1592, May 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.1539
    [16] W. Anqi, X.-G. Ye, D.-P. Yu, and Z.-M. Liao, “Topological semimetal nanostructures: From properties to topotronics,” ACS Nano, vol. 14, 04 2020.
    [17] C.-H. Chang and C. Ortix, “Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoscrolls,” Nano Letters, vol. 17, no. 5, pp. 3076–3080, 2017, pMID: 28394625. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b00426
    [18] S. Bellucci and P. Onorato, “Landau levels and edge states in a cylindrical twodimensional electron gas: A semiclassical approach,” Phys. Rev. B, vol. 82, p. 205305, Nov 2010. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.82.205305
    [19] A. Brizard, “Beyond linear gyrocenter polarization in gyrokinetic theory,” Physics of Plasmas, vol. 20, 06 2013.
    [20] N. W. Ashcroft and N. D. Mermin, Solid state physics. New York, NY: Holt, Rinehart and Winston, 1976. [Online]. Available: https://cds.cern.ch/record/102652
    [21] S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz,“Evenly curved two-dimensional electron systems in rolled-up Hall bars,” Applied Physics Letters, vol. 88, no. 21, p. 212113, 05 2006. [Online]. Available: https://doi.org/10.1063/1.2206135
    [22] C.-H. Chang, J. van den Brink, and C. Ortix, “Strongly anisotropic ballistic magnetoresistance in compact three-dimensional semiconducting nanoarchitectures,”Phys. Rev. Lett., vol. 113, p. 227205, Nov 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.227205
    [23] S. Wolfram, An Elementary Introduction to the Wolfram Language. Wolfram Media, Incorporated, 2015. [Online]. Available: ttps://books.google.com.tw/books?id=efIvjgEACAAJ
    [24] G. Ferrari, A. Bertoni, G. Goldoni, and E. Molinari, “Cylindrical two-dimensional electron gas in a transverse magnetic field,” Phys. Rev. B, vol. 78, p. 115326, Sep 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.78.115326
    [25] S. M. Blinder, “Eigenvalues for a pure quartic oscillator,” 2019.
    [26] S. Datta, Quantum Transport: Atom to Transistor, ser. Ke xue qian yan cong shu. Cambridge University Press, 2005. [Online]. Available: https://books.google.com.tw/books?id=Yj50EJoS224C
    [27] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “Quantized conductance of point contacts in a two-dimensional electron gas,” Phys. Rev. Lett., vol. 60, pp. 848–850, Feb 1988. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.60.848
    [28] J. E. Müller, “Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime,” Phys. Rev. Lett., vol. 68, pp. 385–388, Jan 1992. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.68.385
    [29] L.-j. Yin, K. Bai, W.-x. Wang, S.-y. Li, Y. Zhang, and L. He, “Landau quantization of dirac fermions in graphene and its multilayer,” 03 2017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE