| 研究生: |
唐偉哲 Tang, Wei-Che |
|---|---|
| 論文名稱: |
觸媒輔助成長氮化銦鎵奈米線與氯氣輔助成長自組裝氮化鎵奈米柱光電元件 Catalyst-assisted Growth of InGaN Nanowires and Chlorine-assisted Growth of Self-assembly GaN Nanorods for Optoelectronic Device |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 氮化鎵 、氮化銦鎵 、電漿輔助化學氣相沉積 、光電元件 、銦含量 |
| 外文關鍵詞: | GaN, InGaN, plasma-assisted chemical vapor deposition, optoelectronic devices, indium incorporation |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵為一寬能隙且直接能隙的半導體材料,其能隙3.43 eV,其主要應用於發光二極體、雷射光源、高功率電晶體和高電子遷移率電晶體。在此研究中,利用電漿輔助化學沈積法製備氮化銦鎵奈米線與氮化鎵發光元件。
此研究內容分為兩部分,第一部分以VLS成長機制利用金觸媒於700℃成長氮化銦鎵奈米線。氣相中微量銦蒸氣存在時,只可合成具有大量缺陷的氮化鎵奈米線;當處於高銦蒸氣壓氣相環境下,可合成出氮化銦鎵奈米線,其內部銦之含量可達14%可激發出高強度417 nm波長光。依據勒沙特列原理,提高氣相中氮電漿濃度,可增加氮化銦熱穩定性,從而提高氮化銦鎵內部銦含量達到25%,可激發460 nm光源。第二部分為單晶氮化鎵奈米柱發光元件製備。先於高溫960℃成長高品質n型氮化鎵,而後分別利用氯氣輔助低溫磊晶成長氮化銦鎵與p型氮化鎵,形成p-n氮化鎵發光元件結構。電性量測可知元件起始電壓3.7 V具有整流特性,逆向偏壓下無漏電現象。氣相中含微量氫氣可使氮化銦鎵磊晶層表面平坦化並抑制氮化銦鎵與氮化鋁鎵的多晶結構形成單晶磊晶層,可降低缺陷濃度、提高元件發光效率。
This research is involving of two parts. First part is that Au-assisted growths of InGaN nanowires by VLS growth mechanism at 700℃. GaN nanowires with a mount of planar defects were synthesized as low indium vapor pressure in the gas phase. As the high indium vapor pressure in the gas phase, there are InGaN nanowires with 14% atomic indium and high-intensity wavelength emission at 410 nm grown on Si(100). According to Le Chatelier's Principle, in order to enhance the thermal stability of InN material at the high temperature, the high nitrogen plasma concentration has used. Therefore, the indium content in InGaN nanowires with 460 nm emission light increases to 24% atomic. Other part is the single crystal GaN nanorods grown for Optoelectronic devices. In advance, at 960℃ growth temperature, high-quality Si-doped n-GaN nanorods were synthesized. Cl2-assisted InGaN and p-GaN epitaxial films were respectively grown on n-GaN nanorods at 600℃ to form p-i-n GaN for Optoelectronic structure.
[1] 郭啟田, “市面上各種燈具光源介紹”, 能源報導, pp. 32-34 (2010).
[2] 許世杰, “節能照明技術—淺談發光二極體”, 科學月刊, Vol. 532, pp.273-280 (2014).
[3] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”, Jpn. J. Appl. Phys., Vol. 34, Pt. 2, No. 7A, pp. L797-L799 (1995).
[4] S. Nakamura, M. Senoh, S. Nagahama, and N. Iwasa, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., Vol. 35, Pt. 2, No.1B, pp. L74-L76, (1996).
[5] M. S. Shur, “GaN based transistors for high power applications”, Solid-State Electronics, Vol. 42, No.12, pp. 2131-2138 (1998).
[6] D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope”, Nature, Vol. 344, No. 5, pp. 524-526 (1990).
[7] M. F. Crommie, C. P. Lutz and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface”, Science, Vol. 262, No. 5153, pp. 218-220 (1993).
[8] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, No. 7, pp. 56-58 (1991).
[9] C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, and M. Meyyappan, “High Lateral Resolution Imaging with Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe”, J. Phys. Chem. B, Vol. 108, No. 9, pp. 2816-2821 (2004).
[10] Y. Wu and P. Yang, “Direct Observation of Vapor−Liquid−Solid Nanowire Growth”, J. Am. Chem. Soc., Vol. 123, No. 13, pp. 3165-3166 (2001).
[11] R. S. Wagner, Whisker Technology, Wiley-Interscience, New York (1970).
[12] S. T. Lee, N. Wang, Y. F. Zhang and Y. H. Tang, “Oxide-Assisted Semiconductor Nanowire Growth”, MRS Bull., Vol. 24, No. 8, pp. 36-42 (1999).
[13] B. Gates, B. Mayers, B. Cattle and Y. Xia, “Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium”, Adv. Funct. Mater., Vol. 12, No. 3, pp. 219-227 (2002).
[14] B. Messer, J.H. Song, M. Huang, Y. Wu, F. Kim and P. Yang, “Surfactant-Induced Mesoscopic Assemblies of Inorganic Molecular Chains”, Adv. Mater., Vol. 12, No. 20, pp. 1526-1528 (2000).
[15] M. Zheng, L. Zhang, X. Zhang, J. Zhang and G. Li, “Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes”, Chem. Phys. Lett., Vol. 334, No. 4-6, pp. 298-302 (2001).
[16] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science, Vol. 270, No. 5243, pp. 1791-1794 (1995).
[17] S. H. Yu, J. Yang, Z. H. Han, R. Y. Yang, Y. T. Qian and Y. H. Zhang, “Novel Solvothermal Fabrication of CdSxSe1−x Nanowires”, J. Solid State Chem., Vol. 147, No. 2, pp. 637-640 (1999).
[18] S. Nakamura, Y. Harada and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth”, Appl. Phys. Lett., Vol. 58, No. 18, pp. 2021-2023 (1991).
[19] V. W. L. Chin, T. L. Tansely and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides”, J. Appl. Phys., Vol. 75, pp. 7365 (1994).
[20] S. Gwo, C. L. Wu, C. H. Shen, H. W. Lin, H. Y. Chen and H. Ahn, “InN-on-Si heteroepitaxy: growth, optical property, and applications”, Proc. of SPIE, Vol. 6134, pp. 61340L-1 (2006).
[21] L. -W. Ji, Y. K. Sua, S. J. Chang, C. S. Chang, L. W. Wua, W. C. Lai, X. L. Du, H. Chen, “InGaN/GaN multi-quantum dot light-emitting diodes”, J. Cryst. Growth, Vol. 263, pp. 114 (2004).
[22] Y. J. Lee, T. C. Lu, H. C. Kuo, Senior Member, IEEE, and S. C. Wang, Life Member, IEEE, “High Brightness GaN-Based Light-Emitting Diodes”, J. Disp. Technol., Vol. 3, No. 2, pp. 118-125 (2007).
[23] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lelt., Vol. 64, No. 13, pp. 1687-1689 (1994).
[24] Z. H. Yu, M. A. L. Johnson, J. D. Brown, N. A. El-Masry, J. W. Cook Jr., J. F. Schetzina, “Study of the epitaxial–lateral-overgrowth (ELO) process for GaN on sapphire”, J. Cryst. Growth, Vol. 195, No.1-4, pp. 333-339 (1998).
[25] C. Y. Cho, M. K. Kwon, I. K. Park, S. H. Hong, J. J. Kim, S. E. Park, S. T. Kim, and S. J. Park, “High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask”, Opt. Express, Vol. 19, No. S4, pp. A943-A948 (2011).
[26] S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improved Light Extraction of Nitride-Based Flip-Chip Light-Emitting Diodes Via Sapphire Shaping and Texturing”, IEEE Photonics Technol. Lett., Vol. 18, No. 24, pp. 2623-2625 (2006).
[27] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, No. 6, pp. 855-857 (2004).
[28] H. M. Kim, Y. H. L. Cho , K. Hosang, I. R. Suk, R. K. Sung, Y. Deuk, T. W. Kang, and K. S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays”, Nano Letter., Vol. 4, No. 6, pp. 1059-1062 (2004).
[29] S. D. Hersee, M. Fairchild, A. K. Rishinaramangalam, M. S. Ferdous, L. Zhang, P. M. Varangis, B. S. Swartzentruber and A. A. Talin, “GaN nanowire light emitting diodes based on templated and scalable nanowire growth process”, Electron. Lett., Vol. 45, No. 1, (2009)
[30] 吳尚彥, 張正陽, “壓印微結構應用於氮化鎵發光二極體之研究”, 國立中央大學光電科學研究所, pp. 12 (2008)
[31] J. G. Lozano, F. M. Morales, R. Garcia, D. Gonzalez, V. Lebedev, C. Y. Wang, V. Cimalla and O. Ambacher, “Cubic InN growth on sapphire (0001) using cubic indium oxide as buffer layer”, Appl. Phys. Lett., Vol. 90, pp. 091901 (2007).
[32] Z. G. Qian, W. Z. Shen, H. Ogawa and Q. X. Guo, “Experimental studies of lattice dynamical properties in indium nitride”, J. Phys.: Condens. Matter, Vol. 16, R381-R414 (2004).
[33] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi and P. Yang, “Single-crystal gallium nitride nanotubes”, Nature, Vol. 422, No. 6932, pp. 599-602 (2003).
[34] S. N. Mohammad and H. Morkoc, “Progress and prospects of group-III nitride semiconductors”, Prog. Quant. Electron., Vol. 20, pp. 390-394 (1996).
[35] B. E. Foutz, S. K. O’Leary, M. S. Shur and L. F. Eastman, “Transient electron transport in wurtzite GaN, InN, and AlN”, J. Appl. Phys.,Vol. 85, No. 11, pp. 7727-7734 (1999).
[36] R. Ascazubi, I. Wilke, K. Denniston, H. Lu and W. J. Schaff, “Terahertz emission by InN”, Appl. Phys. Lett., Vol. 84, No. 23, pp. 4810-4812 (2004).
[37] S. K. Pugh, D. J. Dugdale, S. Brand and R. A. Abram, “Electronic structure calculations on nitride semiconductors”, Semicond. Sci. Technol., Vol. 14, pp. 23-31 (1999).
[38] M. Yoshimoto, H. Yamamoto, W. Huang, H. Harima, J. Saraie, A. Chayahara and Y. Horino, “Widening of optical bandgap of polycrystalline InN with a few percent incorporation of oxygen”, Appl. Phys. Lett., Vol. 83, No. 17, pp. 3480-3482 (2003).
[39] A. G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto and V. Yu Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy”, Appl. Phys. Lett., Vol. 83, No. 23, pp. 4788-4790 (2003).
[40] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, “Unusual properties of the fundamental band gap of InN“, Appl. Phys. Lett., Vol. 80, No. 21, pp. 3967-3969 (2002).
[41] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley and L. F. Eastman, “Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy”, Appl. Phys. Lett., Vol. 79, No. 10, pp. 1489-1491 (2001).
[42] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima,and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett., Vol. 81, No. 7, pp. 1246-1248 (2002).
[43] Y. Huang, H. Wang, Q. Sun, J. Chen, D.Y. Li, Y.T. Wang and H. Yang, “Low-temperature growth of InN by MOCVD and its characterization”, J. Cryst. Growth, Vol. 276, No.1-2, pp. 13-18 (2005).
[44] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach”, Nat. Mater., Vol. 6, pp. 951-956 (2004).
[45] A. G. Bhuiyan, T. Tanaka, K. Kasashima, A. Hashimoto and A. Yamaoto, “Growth and Characterization of Epitaxial InN Films on Sapphire Substrate using an ArF Excimer Laser-Assisted Metalorganic Vapor-Phase Epitaxy (LA-MOVPE)”, Jpn. J. Appl. Phys., Vol. 42, Pt. 1, No. 12, pp. 7284-7289 (2003).
[46] J. Aderhold, V. Yu Davydov, F. Fedler, D. Mistele, H. Klausing, T. Rotter, O. Semchinova, J. Stemmer and J. Graul, “Electronic and structural properties of InN thin films grown by MOMBE on sapphire substrates”, Proc. SPIE, Vol. 4086, pp. 82-86 (2000).
[47] J. Grandal, M.A. Sánchez-García, F. Calle, and E. Calleja, “Morphology and optical properties of InN layers grown by molecular beam epitaxy on silicon substrates”, Phys. Stat. Sol. (c), Vol. 2, No. 7, pp.2289-2292 (2005).
[48] A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties”, J. Appl. Phys., Vol. 94, No. 5, pp. 2779-2808 (2003).
[49] L. Liu, J. H. Edgar, “Substrates for gallium nitride epitaxy”, Mater. Sci. Eng. Rep., Vol. 37, No. 3, pp. 61-127 (2002).
[50] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett., Vol. 65, No. 9, pp. 1121-1123 (1994).
[51] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond. Res., Vol. 3, pp. 41 (1998).
[52] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett., Vol. 62, pp. 1786 (1993).
[53] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol., Vol. 14, pp. R27-R40 (1999).
[54] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg‐doped p‐type GaN films”, Appl. Phys. Lett., Vol. 63, No. 8, pp. 2455-2456 (1993).
[55] W. C. Johnson, J. B. Parson, and M. C. Crew, “Nitrogen Compounds of Gallium III. Gallium Nitride”, J. Phys. Chem., Vol. 36, No. 10, pp. 2651–2654 (1932).
[56] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., Vol. 31, Pt. 2, No. 2B, pp. L139-L142 (1992).
[57] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys., Vol. 31, Pt. 1, No. 5A, pp. 1258-1266 (1992).
[58] S. Yoshida, S. Mwasawa, S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates”, Appl. Phys. Lett., Vol. 42, No. 5, pp. 427-429 (1983).
[59] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., Vol. 30, No. 10A, pp. L1705-1707 (1991).
[60] W. Li , A. Z. Li, M. Qi, Y. G. Zhang, Z. B. Zhao, Q. K. Yang, “Characterization of GaN grown by RF plasma MBE”, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., Vol. 75, No. 2-3, pp. 224-227 (2000).
[61] Y. Inoue, T. Hoshino, S. Takeda, K. Ishino, A. Ishida et al., “Strong luminescence from dislocation-free GaN nanopillars”, Appl. Phys. Lett., Vol. 85, No. 12, pp. 2340-2342 (2004).
[62] W. C. Hou, L. Y. Chen, Franklin C. N. Hong, “Fabrication of gallium nitride nanowires by nitrogen plasma”, Diam. Relat. Mat., Vol. 17, No. 7-10, pp. 1780-1784 (2008).
[63] H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate”, Appl. Phys. Lett., Vol. 96, No. 23, pp. 231104, (2010).
[64] W. Guo, M. Zhang, A. Banerjee and P. Bhattacharya, “Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy”, Nano Lett., Vol. 10, No. 9, pp. 3355–3359 (2010).
[65] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater., Vol. 15, No. 5, pp. 253-389 (2003).
[66] R. S. Wagner and W. C. Ellis, “VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH”, Appl. Phys. Lett., Vol. 4, No. 5, pp. 89-90 (1964).
[67] X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Adv. Mater., Vol. 12, pp. 298-302 (2000).
[68] X. F. Duan and C. M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires”, J. Am. Chem. Soc., Vol. 122, No. 1, pp. 188-189 (2000).
[69] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., Vol. 13, No. 2, pp. 113-116 (2001).
[70] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers”, Appl. Phys. Lett., Vol. 61, No. 17, pp. 2051-2053 (1992).
[71] A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, Vol. 279, No. 5348, pp. 208-211 (1998).
[72] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge”, Adv. Mater., Vol. 12, No. 10, pp. 746-750 (2000).
[73] J. Hu, M. Ouyang, P. Yang and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires”, Nature, Vol. 399, pp. 48-51 (1999).
[74] H. Omi and T. Ogino, “Self-assembled Ge nanowires grown on Si(113)”, Appl. Phys. Lett., Vol. 71, No. 15, pp. 2163-2165 (1997).
[75] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen and C. M. Lieber, “Growth and transport properties of complementary germanium nanowire field-effect transistors”, Appl. Phys. Lett., Vol. 84, No. 21, pp. 4176-4178 (2004).
[76] S. H. Yun, A. Dibos, J. Z. Wu and D. -K. Kim, “Effect of quench on crystallinity and alignment of boron nanowires”, Appl. Phys. Lett., Vol. 84, No. 15, pp. 2892-2894 (2004).
[77] D. Wang, J. G. Lu, C. J. Otten and W. E. Buhro, “Electrical transport in boron nanowires”, Appl. Phys. Lett., Vol. 83, No. 25, pp. 5280-5282 (2003).
[78] Y. C. Zhu, Y. Bando, D. F. Xue and D. Golberg, “Oriented Assemblies of ZnS One-Dimensional Nanostructures”, Adv. Mater., Vol. 16, No. 9-10, pp. 831-834 (2004).
[79] Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, S. Hark, “Size-Dependent Periodically Twinned ZnSe Nanowires”, Adv. Mater., Vol. 16, No. 16, pp. 1436-1440 (2004).
[80] C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, “ On the Growth of CdS Nanowires by the Evaporation of CdS Nanopowders”, J. Phys. Chem. B, Vol. 106, No. 40, pp. 10338-10341 (2002).
[81] B. B. Xiao, Y. B. Xu, “VLS synthesis of disordered CdSe nanowires and optical properties of an individual CdSe nanowire”, Physica E, Vol. 44, No. 3, pp. 696–699 (2011).
[82] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng and Y.F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J .Am. Chem. Soc., Vol. 123, No. 12, pp. 2791-2798 (2001).
[83] R. Sun, D. Jacobsson, I. J. Chen, M. Nilsson, C. Thelander, S. Lehmann, and K. A. Dick, “Sn-Seeded GaAs Nanowires as Self-Assembled Radial p–n Junctions”, Nano Lett., Vol. 15, No. 6, pp. 3757–3762 (2015).
[84] R. Hupta, Q. Xiong, G. D. Mahan and P. C. Eklund, “Surface Optical Phonons in Gallium Phosphide Nanowires”, Nano. Lett., Vol. 3, No. 12, pp. 1745-1750 (2003).
[85] E. P. A. M. Bakkers and M. A. Verheijen, “Synthesis of InP Nanotubes”, J. Am. Chem. Soc., Vol. 125, No. 12, pp. 3440-3441 (2003).
[86] Z. Zhang, Z. Y. Lu, H. Y. Xu, P. P. Chen, W. Lu, and J. Zou, “Structure and Quality Controlled Growth of InAs Nanowires through Catalyst Engineering”, Nano Res., Vol. 7, No. 11, pp. 1640-1649 (2014)
[87] S. C. Lyu, Y. Zhnag, C. J. Lee, H. Ruh and H. J. Lee, “Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method”, Chem. Mater., Vol. 15, No. 17, pp. 3294-3299 (2003).
[88] P. Gao and Z. L. Wang, “Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnO”, J. Phys. Chem. B, Vol. 106, No. 49, 12653-12658 (2002).
[89] C. Tang, Y. Bando and T. Sato, “Oxide-Assisted Catalytic Growth of MgO Nanowires with Uniform Diameter Distribution”, J. Phys. Chem. B, Vol. 106, No. 30, pp. 7449-7452 (2002).
[90] J. W. Hu, Q. Li, X. M. Meng, C. S. Lee and S. T. Lee, “Synthesis of β-Ga2O3 Nanowires by Laser Ablation”, J. Phys. Chem. B, Vol. 106, No. 37, pp. 9536-9539 (2002).
[91] K. W. Chang and J. J. Wu, “Low-Temperature Catalytic Growth of β- Ga2O3 Nanowires Using Single Organometallic Precursor”, J. Phys. Chem. B, Vol. 108, No. 6, pp. 1838-1843 (2004).
[92] Y. Wang, V. Schmidt, S. Senz and U. Gosele, “Epitaxial growth of silicon nanowires using an aluminium catalyst”, Nat. Nanotechnol., Vol. 1, No. 3, pp. 186-189 (2006).
[93] X. Weng, R. A. Burke and J. M. Redwing, “The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal–organic chemical vapor deposition”, Nanotechnology, Vol. 20, pp. 085610 (2009).
[94] Leonardo C. Campos, and Matteo Tonezzer, Andre S. Ferlauto, Vincenzo Grillo, Roge´rio Magalha ˜es-Paniago, Sergio Oliveira, Luiz O. Ladeira, and Rodrigo G. Lacerda, “Vapor–Solid–Solid Growth Mechanism Driven by Epitaxial Match between Solid AuZn Alloy Catalyst Particles and ZnO Nanowires at Low Temperatures”, Adv. Mater., Vol. 20, No. 8, pp. 1499–1504(2008).
[95] L. Geelhaar, C. Cheze, W. M. Weber, R. Averbeck, and H. Riechert, “Axial and radial growth of Ni-induced GaN nanowires”, Appl. Phys. Lett., Vol. 91, No. 9, pp. 093113 (2007)
[96] W. C. Hou, L. Y. Chen, W. C. Tang, and Franklin C. N. Hong, “Control of Seed Detachment in Au-Assisted GaN Nanowire Growths”, Cryst. Growth Des., Vol. 11, pp. 990–994 (2011).
[97] T. Yanagida, K. Nagashima, H. Tanaka, and T. Kawai, “Mechanism of catalyst diffusion on magnesium oxide nanowire growth”, Appl. Phys. Lett., Vol. 91, No. 6, pp. 061502 (2007).
[98] K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, and T. Kawai, “Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth”, Appl. Phys. Lett., Vol. 93, No. 15, pp. 153103 (2008).
[99] J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, “The influence of the surface migration of gold on the growth of silicon nanowires”, Nature, Vol. 440, pp. 69-71 (2006).
[100] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, “Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111)”, J. Cryst. Growth, Vol. 183, No. 1-2, pp. 23-30 (1998).
[101] J. Ristic,, E. Calleja, S. Ferna´ndez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, “On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth, Vol. 310, pp. 4035–4045 (2008).
[102] Jörg Neugebauer, Tosja K. Zywietz, Matthias Scheffler, John E. Northrup, Huajie Chen, and R. M. Feenstra., “Adatom Kinetics On and Below the Surface: The Existence of a New Diffusion Channel”, Phys. Rev. Lett., Vol. 90, pp. 05101 (2003).
[103] Dai Xian-Qi, Wu Hua-Sheng, Xie Mao-Hai, Xu Shi-Hong and Tong Shuk-Yin, “Nitrogen adatom diffusion on a Ga-rich GaN(0001) surface”, Chin. Phys. Lett., Vol. 21, No. 3, pp. 527-529 (2004).
[104] H. W. Li, H. Chandrasekaran1, M. K. Sunkara, R. Collazo, Z. Sitar, M. Stukowski, K. Rajan, “Self-oriented Growth of GaN Films on Molten Gallium”, Mater. Res. Soc. Symp. Proc., Vol. 831, pp. E11.34.1-E11.34.6 (2005).
[105] Y. S. Cho, H. Hardtdegen, N. Kaluza, N. Thillosen, R. Steins, Z. Sofer, and H. Lüth, “Effect of carrier gas on GaN epilayer characteristics”, Phys. Stat. Sol. (c), Vol. 3, No. 6, pp. 1408–1411 (2006).
[106] L. V. Titova, Thang B. Hoang, H. E. Jackson, and L. M. Smith, “Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires”, Appl. Phys. Lstt., Vol. 89, No. 17, pp. 173126 (2006).
[107] V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, “Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius”, Phys. Rev. B, Vol. 81, No. 8, pp. 085310 (2010).
[108] W. Seifert, G. Fitzl, E. Butter, “Study on the growth rate in VPE of GaN”, J. Cryst. Growth, Vol. 52, No. 1, pp. 257-262 (1981).
[109] C. E. C. Dam, A. P. Grzegorczyk, P. R. Hageman, P. K. Larsen, “Method for HVPE growth of thick crack-free GaN layers”, J. Cryst. Growth, Vol. 290, No. 2, pp. 473–478 (2006).
[110] G. Seryogin, I. Shalish, W. Moberlychan and V. Narayanamurti, “Catalytic hydride vapour phase epitaxy growth of GaN nanowires”, Nanotechnology, Vol 16, No. 10, pp. 2342–2345 (2005).
[111] H. F. Lu, G. H. Yu, C. T. Lin, X. Z. Wang, B. Wang, X. P. Shi, M. Qi, and A. Z. Li, “High quality GaN film overgrown on GaN nanorods array template by HVPE”, Mater. Lett., Vol. 64, No.13, pp. 1490–1492 (2010).
[112] H. -M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung “Growth of GaN Nanorods by a Hydride Vapor Phase Epitaxy Method”, Adv. Mate., Vol. 14, No. 13-14, pp. 991-993 (2002).
[113] T. Yamane*, K. Hanaoka, H. Murakami, Y. Kumagai, and A. Koukitu, “Tri-halide vapor phase epitaxy of GaN using GaCl3 gas as a group III precursor”, Phys. Status Solidi C, Vol. 8, No. 5, pp. 1471–1474 (2011).
[114] D. H. Kuo and W. H. Wu, “The Growth of GaN Nanowires by LiF-Assisted CVD”, Chem. Vapor Depos., Vol. 15, No. 1-3, pp. 11–14 (2009).
[115] G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, “Springer Handbook of Crystal Growth”, Berlin, Heidelberg : Springer, New York, pp. 870 (2010).
[116] M. Bosi, R. Fornari, “A study of indium incorporation efficiency in InGaN grown by MOVPE”, J. Cryst. Growth, Vol. 265, No. 3, pp. 434-439 (2004).
[117] B. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices”, Pearson Prentice Hall, New Jersey, pp.161 (2006).
[118] B. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices”, Pearson Prentice Hall, New Jersey, pp.171 (2006).
[119] B. G. Streetman, and S. K. Banerjee, “Solid State Electronic Devices”, Pearson Prentice Hall, New Jersey, pp.186 (2006).
[120] J. R. Roth, “Industrial plasma engineering-Volume 1: Principles Institute of Physics”, Publishing in London, (1995).
[121] D. B. Williams, A. B. Carter, “Transmission Electron Microscopy”, Plenum Press, New York, Vol. 1, pp. 7 (1996).
[122] S. Milita, “X-ray Rocking-Curve Analysis of Crystals with Buried Amorphous Layers. Case of Ion-Implanted Silicon”, J. Appl. Crystallogr., Vol. 28, No. 6, pp. 666~672, (1995).
[123] K. K. Smith, “Photoluminescence of semiconductor materials”, Thin Solid Films, Vol. 84, No. 2, pp. 171-182, (1981).
[124] J. P. Wolfe and A. Mysyrowicz, “Excitonic matter”, Sci. Am., Vol. 250, pp. 98-107 (1984).
[125] J. I. Pankove, “Optical Process in Semiconductors,” Dover Pub- lications Inc., New York, pp. 15-22 (1975).
[126] T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, “Binary alloy phase diagrams, second ed.”, American Society for Metals, Metals Park, OH (1986).
[127] J. T. Hsieh, J. M. Hwang, H. L. Hwang, J. K. Ho, C. N. Huang, C. Y. Chen, and W. H. Hung, “Photoluminescence Study on Threading Dislocation in GaN Revealed by Selective Photoelectrochemical Etching”, Electrochem. Solid State Lett., Vol. 3, pp. 395-398 (2000)
[128] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections”, Nano Lett., Vol. 3, No. 8, pp. 1063-1066 (2003).
[129] H.-C. Lin, C.-K. Shu, J. Ou, Y.-C. Pan, W.-K. Chen, W.-H. Chen, and M.-C. Lee,“Growth temperature effects on InXGa1-XN films studied by X-ray and photoluminescence”, J Cryst. Growth, Vol. 189-190, pp. 57–60 (1998).
[130] M. A. Mastro, O. M. Kryliouk, M. D. Reed, T. J. Anderson, A. Davydov, and A. Shapiro, “Thermal Stability of MOCVD and HVPE GaN Layers in H2, HCl, NH3 and N2”, phys. stat. sol. (a), Vol. 188, No. 1, pp. 467–471 (2001).
[131] M. A. Mastro, O. M. Kryliouk, T. J. Anderson, A. Davydov, and A. Shapiro, “Influence of polarity on GaN thermal stability”, J. Cryst. Growth, Vol. 274, pp. 38–46 (2005).
[132] J. Yoo, Y.-J. Hong, S. J. An, and G.-C. Yi et al., “Photoluminescent characteristics of Ni-catalyzed GaN nanowires”, Appl. Phys. Lett., Vol. 89, pp. 043124 (2006).
[133] 蔡文益, “氮化鎵奈米晶體之成長及應用”, 2012.
[134] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN”, Appl. Phys. Lett., Vol. 71, pp. 921-923 (1997).
[135] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe”, John Wiley & Sons, Inc., New York, pp. 1-30 (2001).
[136] D. Iida, K. Tamura, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, “Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy”, J. Cryst. Growth, Vol. 312, pp. 3131–3135 (2010).