簡易檢索 / 詳目顯示

研究生: 陳文子
Tran, Van-Ty
論文名稱: 用於壓電及/或光熱輔助光催化污染物降解與光電化學水分解之異質結構複合材料的建構
Construction of heterostructure composites for piezoelectric and/or photothermal assisted photocatalytic pollutant degradation and photoelectrochemical water splitting
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 106
中文關鍵詞: Ag2O@BiFeO3CuS@MoS2異質結構p-n異質接面壓電光熱效應光催化降解光電化學水分解
外文關鍵詞: Ag2O@BiFeO3, CuS@MoS2, heterostructure, p–n heterojunction, piezoelectric, photothermal effect, photocatalytic degradation, photoelectrochemical water splitting
相關次數: 點閱:36下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為異質結構複合材料在壓電和光熱輔助的光催化降解污染物和光電化學(PEC)水分解的應用。本研究分為兩部分,第一部分使用水熱法製備Ag2O@BiFeO3異質結構,在BiFeO3材料中引起的壓電電勢能夠減少光生載子的復合來促進光催化活性。此外,Ag2O和BiFeO3材料之間形成的p-n接面避免了Ag2O奈米顆粒的光腐蝕效應,進而提高了Ag2O@BiFeO3複合材料的光催化效率。在可見光-近紅外輻射和機械振動下,Ag2O@BiFeO3複合材料展示了優異的壓電光降解活性,在60分鐘內能降解約97%的羅丹明B,並在120分鐘內降解約100%的四環素。Ag2O@BiFeO3複合材料在光電化學水分解中也表現出良好的活性,其光電流密度(⁓6.2 mAcm–2)在壓電-PEC條件下得到增強。本研究也討論了光穩定性和相關的壓電光催化機制,證明Ag2O@BiFeO3異質結構具有優異的光催化性能,突顯其在環境治理中的應用潛力。在第二部分中,本研究利用水熱法製備一種在可見光到可見光-近紅外輻照下具有高效光催化活性的CuS@MoS2新型複合材料,並確定了CuS@MoS2複合材料中CuS和MoS2兩相的共存。複合材料的形貌和微結構的研究顯示CuS微球直徑為1–2 µm,且MoS2奈米片均勻地分布在其表面。CuS和MoS2的能隙分估計別為1.56和1.80 eV,而CuS@MoS2複合材料顯示出較低的能隙,顯示其具有在可見光-近紅外範圍內吸收光的能力。此外,本研究透過Mott-Schottky (M-S)測量樣品的導電類型,發現CuS@MoS2複合材料的M-S曲線呈倒V形,顯示該複合材料具有p-n接面的特徵,且MoS2表面的壓電特性引起的電場增強了電荷分離和壓電催化活性。在此過程中,產生的熱量為載子提供了額外的能量,從而提高了光催化過程中的反應速率。壓電性和光熱轉換的結合也造就了顯著的協同效應,在30分鐘內達到超過96%的降解效率。

    This dissertation focuses on the construction of heterostructure composites for piezoelectric and photothermal–assisted photocatalytic pollutant degradation and photoelectrochemical (PEC) water splitting. The content includes two topics. Firstly, the Ag2O@BiFeO3 heterojunction was fabricated using the hydrothermal method. The induced piezoelectric potential in the BiFeO3 material could promote the photocatalytic activity by reducing the recombination of photogenerated charges. Furthermore, the p–n junction formation between Ag2O and BiFeO3 materials prevented the photocorrosion effect of Ag2O nanoparticles, improving the photocatalyst efficiency of Ag2O@BiFeO3 composite. Under Vis–NIR irradiation and mechanical vibration, the Ag2O@BiFeO3 composite exhibited an excellent piezophotodegradation activity, degrading approximately 97% of Rhodamine B in 60 min and approximately 100% tetracycline in 120 min. The Ag2O@BiFeO3 composite also exhibited good activity for photoelectrochemical water splitting, and its photocurrent density (⁓ 6.2 mA cm–2) could be enhanced under piezo–PEC conditions. The photostability and associated piezophotocatalytic mechanism were discussed. The Ag2O@BiFeO3 heterojunction was demonstrated to possess outstanding photocatalytic performance, highlighting its potential for effective application in environment treatment. Secondly, a novel CuS@MoS2 composite with highly efficient photocatalytic activity under Vis to Vis–NIR irradiation was fabricated by a hydrothermal method. The co-existence of the two phases of CuS and MoS2 in the CuS@MoS2 composite was confirmed, and the investigations on the morphology and microstructure revealed the formation of the CuS microspheres of 1–2 µm in diameter with MoS2 nanosheets uniformly dispersed on the surface. The band gaps of pure CuS and MoS2 were estimated to be 1.56 and 1.80 eV, respectively. The CuS@MoS2 composite exhibited a low bad gap, suggesting its ability to absorb light in the Vis–NIR range. Moreover, the conductive type of the samples was determined through Mott Schottky (M–S) measurements. An inverted V–shape was observed in the M–S curve of CuS@MoS2 composites, indicating the characteristic of the p–n junction in the composite. The piezoelectric feature on the surface of MoS2 induced an electric field that amplified both charge separation and piezoelectric catalytic activity. Additionally, the generated heat supplied extra energy to charge carriers, leading to improved reaction rates in photocatalytic process. Furthermore, the combination of piezoelectricity and photothermal conversion also led to a significant synergistic effect, achieving a degradation efficiency of over 96% within 30 min.

    Abstract I Contents VII Figure contents XII Table contents XV Chapter 1: Introduction 1 1.1 Background 1 1.1.1 Photocatalysis 1 1.1.2 p–n junction 3 1.1.3 Piezo–photodegradation and Piezo–Photoelectrochemical water splitting 4 1.1.4 Piezotronic effects 6 1.1.5 Photothermal effect 10 1.2 Motivation 12 Chapter 2: Fundamentals 14 2.1 Fundamentals to materials 14 2.1.1 BiFeO3 14 2.1.2 Ag2O 15 2.1.3 MoS2 16 2.1.4 CuS 17 2.2 Photocatalysis 19 2.3 Photoelectrochemical water splitting 20 2.4 Hydrothermal method 22 Chapter 3: Ag2O@BiFeO3 heterostructure composite coupling built-in electric field with piezo potential for enhanced photocatalytic pollutant degradation and photoelectrochemical water splitting 25 3.1 Introduction 25 3.2 Experimental methods 27 3.2.1 Synthesis of BiFeO3 nanowires [86] 27 3.2.2 Synthesis of Ag2O NPs and Ag2O@BFO composite [86] 28 3.2.3 Characterization 28 3.2.4 Piezo-photocatalytic measurements 33 3.2.5 Piezo-photoelectrochemical measurements 33 3.3 Results and discussion 34 3.3.1 Basic properties of BFO, Ag2O and Ag2O@BFO 34 3.3.2 Optical, electronic, and piezoelectric properties 38 3.3.3 Photodegradation and piezophotodegradation of TC and RhB 42 3.3.4 Piezo-photodegradation mechanism of Ag2O@BFO heterojunction. 46 3.3.5 Piezo-enhanced photoelectrochemical water splitting 47 3.4 Summary 49 Chapter 4: CuS@MoS2 p–n heterojunction photocatalyst integrating photothermal and piezoelectric enhancement effects for tetracycline degradation 51 4.1 Introduction 51 4.2 Experimental methods 53 4.2.1 Synthesis of CuS microspheres 53 4.2.2 Synthesis of MoS2 nanosheets and CuS@MoS2 composite. 54 4.2.3 Characterization 54 4.2.4 Photocatalytic measurements 55 4.3 Results and discussion 56 4.3.1 Basic properties of MoS2, CuS, and CuS@MoS2 composite 56 4.3.2 Optical, electronic and piezoelectric properties 61 4.3.3 Photothermal and piezoelectric assisted photocatalytic degradation of TC 64 4.4 Summary 73 Chapter 5: Conclusions and Future Work 74 References 75

    [1] R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catal. Today 281 (2017) 144−164.
    [2] X.L. Xing, S.L. Tang, H. Hong, H.G. Jin, Concentrated solar photocatalysis for hydrogen generation from water by titania-containing gold nanoparticles, Int. J. Hydrog. 45 (2020) 9612−9623.
    [3] A. Kutuzova, T. Dontsova, W. Kwapinski, Application of TiO2-based photocatalysts to antibiotics degradation: Cases of sulfamethoxazole, trimethoprim and ciprofloxacin, Catalysts 11 (2021) 728.
    [4] W. Fan, C. Chen, H. Bai, B. Luo, H. Shen, W. Shi, Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting, Appl. Catal. B 195 (2016) 9−15.
    [5] B.J. Trześniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D. A. Vermaas, A. Longo, S. Gimenez, and W. A. Smith, Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes, Energy Environ. Sci. 10(6) (2017) 1517−1529.
    [6] C.R. Jiang, S.J.A. Moniz, A.Q. Wang, T. Zhang, J.W. Tang, Photoelectrochemical devices for solar water splitting - materials and challenges, Chem. Soc. Rev. 46 (2017) 4645−4660.
    [7] S.Y. Jeong, J. Song, S. Lee, Photoelectrochemical device designs toward practical solar water splitting: a review on the recent progress of BiVO4 and BiFeO3 photoanodes, Appl. Sci. 8 (2018) 1388.
    [8] S. Annathurai, S. Chidambaram, B. Baskaran, G.K.D.P. Venkatesan, Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes, J. Inorg. Organomet. Polym. Mater. 29 (2019) 535–540.
    [9] Z.R. Liu, X. Yu, L.L. Li, Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field, Chinese J. Catal. 41 (2020) 534−549.
    [10] D. Masekela, N.C. Hintsho-Mbita, B. Ntsendwana, N. Mabuba, Thin films (FTO/BaTiO3/AgNPs) for enhanced piezo-photocatalytic degradation of methylene blue and ciprofloxacin in wastewater, ACS Omega 7 (2022) 24329−24343.
    [11] Y. Lei, S. Xu, M. Ding, L. Li, Q. Sun, Z.L. Wang, Enhanced photocatalysis by synergistic piezotronic effect and exciton–plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures, Adv. Funct. Mater. 30 (2020) 2005716.
    [12] D. Yu, Z. Liu, J. Zhang, S. Li, Z. Zhao, L. Zhu, W. Liu, Y. Lin, H. Liu, Z. Zhang, Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo photocatalytic and ferro-photoelectrochemical effects, Nano Energy 58 (2019) 695–705.
    [13] T.M. Chou, S.W. Chan, Y.J. Lin, P.K. Yang, C.C. Liu, Y.J. Lin, J.M. Wu, J.T. Lee, Z.H. Lin, A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection, Nano Energy 57 (2019) 14–21.
    [14] S. M. A. Z. Shawon, Z. D. Carballo, V. S. Vega, C. Lin, M. S. Rafaqut, A. X. Sun, J. J. Li, M. J. Uddin, Surface modified hybrid ZnSnO3 nanocubes for enhanced piezoelectric power generation and wireless sensory application, Nano Energy 92 (2022) 106653.
    [15] J. Yuan, X. Huang, L. Zhanga, F. Gao, R. Lei, C. Jiang, W. Feng, P. Liu, Tuning piezoelectric field for optimizing the coupling effect of piezophotocatalysis, Appl. Catal. 278 (2020) 119291.
    [16] G. Yang, Q. Chen, W. Wang, S. Wu, B. Gao, Y. Xu, Z. Chen, S. Zhong, J. Chen, S. Bai, Cocatalyst engineering in piezocatalysis: a promising strategy for boosting hydrogen evolution, ACS Appl. Mater. Interfaces 13 (2021) 15305−15314.
    [17] E.A. Volnistem, R.D. Bini, D.M. Silva, J.M. Rosso, G.S. Dias, L.F. Cótica, I.A. Santos, Intensifying the photocatalytic degradation of methylene blue by the formation of BiFeO3/Fe3O4 nanointerfaces, Ceram. Int. 46 (2020) 18768–18777.
    [18] T. Soltani, A. Tayyebi, B. K. Lee, BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation, Catal. Today 340 (2020) 188–196.
    [19] H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu, L.F. Fei, X.X. Chen, Y.M. Jia, Y.J. Wang, F.F. Wang, S. Ju, J.L. Qiao, C.H. Lam, H.T. Huang, Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution, Angew. Chem., Int. Ed. 58 (2019) 11779−11784.
    [20] D. Kumar, S. Sharma, N. Khare, Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity, Renew. Energy 163 (2021) 1569−1579.
    [21] C. Cao, X. Xie, Y. Zeng, S. Shi, G. Wang, L. Yang, C.Z. Wang, S. Lin, Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting, Nano Energy 61 (2019) 550–558.
    [22] J. You, Z. Liu, Z. Guo, M. Ruan, W. Yan, Doping of W ions to modulate the polarization intensity of Bi2WO6 for efficient piezoelectric−photoelechochemical water splitting, ACS Appl. Energy Mater. 5 (2022)11472−11482.
    [23] W.G. Yang, Y.H. Yu, M.B. Starr, X. Yin, Z.D. Li, A. Kvit, S.F. Wang, P. Zhao, X.D. Wang, Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core shell nanowire photoanodes, Nano Lett. 15 (2015) 7574−7580.
    [24] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6 (2006) 2768–2772.
    [25] L. Zhu and Z. L. Wang, Recent progress in piezo‐phototronic effect enhanced solar cells, Adv. Funct. Mater. 29(41) (2019) 1808214.
    [26] M. Que, R. Zhou, X. Wang, Z. Yuan, G. Hu, C. Pan, Progress in piezo-phototronic effect modulated photovoltaics, J. Phys.: Condens. Matter 28 (2016) 433001.
    [27] J. Yu, X. Yang, Q. Sun, Piezo/Tribotronics toward smart flexible sensors, Adv. Intell. Syst. (2020) 1900175.
    [28] Z. Pan, W. Peng, F. Li, Y. Cai, Y. He, On the piezo-phototronic effect in Si/ZnO heterojunction photodiode: the effect of the fermi-level difference, Adv. Funct. Mater. 30 (2020) 2005996.
    [29] H.S. Han, K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications, Biomedicines 9(3) (2021) 305.
    [30] H. Deng, L. Wang, D. Tang, Y. Zhang, L. Zhang, Review on the laser-induced performance of photothermal materials for ignition application, Energ. Mater. Front. 2 (2021) 201–217.
    [31] S. Naya, Y. Shite, H. Tada, Photothermal effect of antimony-doped tin oxide nanocrystals on the photocatalysis, Catal. Commun. 142 (2020) 106044.
    [32] Y. Shi, L. Li, Z. Xu, F. Guo, W. Shi, Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production, J. Chem. Eng. 459 (2023) 141549.
    [33] X. Zhao, Y. Jiang, T. Wang, Q. Lu, K. Zhao, J. Pan, Photothermal-photocatalytic route of MOF-based membrane with nanosheet array structures for solar-driven water purification, Chem. Eng. J. 475 (2023) 146268.
    [34] A.D. Plessis, Persistent degradation: Global water quality challenges and required actions, One Earth 5 (2022) 129−131.
    [35] M. Yousefi, M. Farzadkia, A.H. Mahvi, M. Kermani, M. Gholami, A. Esrafili, Photocatalytic degradation of ciprofloxacin using a novel carbohydrate-based nanocomposite from aqueous solutions, Chemosphere 349 (2024) 140972.
    [36] W. Fan, C. Chen, H. Bai, B. Luo, H. Shen, and W. Shi, Photosensitive polymer and semiconductors bridged by Au plasmon for photoelectrochemical water splitting. Appl. Catal. B 195 (2016) 9−15.
    [37] Y. Zhong, C. Peng, Z. He, D. Chen, H. Jia, J. Zhang, H. Ding, X. Wu, Interface engineering of heterojunction photocatalysts based on 1D nanomaterials, Catal. Sci. Technol. 11 (2021) 27.
    [38] M.A. Marwat, M. Humayun, M.W. Afridi, H. Zhang, M.R.A. Karim, M. Ashtar, M. Usman, S. Waqar, H. Ullah, C. Wang, W. Luo, Advanced catalysts for photoelectrochemical water splitting, ACS Appl. Energy Mater. 4 (2021) 12007−12031.
    [39] L. Zhou, S. Dai, S. Xu, Y. She, Y. Li, S. Leveneur, Y. Qin, Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants, Appl. Catal. B 291 (2021) 120019.
    [40] T.N.N. Nguyen, K.S. Chang, Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films, Renew. Energy 197 (2022) 89−100.
    [41] Y. Shi, L. Li, Z. Xu, F. Guo, W. Shi, Construction of full solar-spectrum available S–scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production, Chem. Eng. J. 459 (2023) 141549.
    [42] R. Haumont, J. Kreisel, P. Bouvier, Raman scattering of the model multiferroic oxide BiFeO3: effect of temperature, pressure and stress, Phase Transit. 79 (2006) 1043–1064.
    [43] R.Z. Xiao, T. Hu, X.B. Yuan, J.J. Zhou, X.Q. Ma, D.J. Fu, Studies of La- and Pr-driven reverse distortion of FeO6 octahedral structure, magnetic properties and hyperfine interaction of BiFeO3 powder, RSC Adv. 8 (2018) 12060.
    [44] T.N.N. Nguyen, K. S. Chang, Piezophotodegradation and piezophotoelectrochemical water splitting of hydrothermally grown BiFeO3 films with various morphologies, J. Environ. Chem. Eng. 10 (2022) 107213.
    [45] H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C. H. Lam, H. Huang, Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution, Angew. Chem. Int. Ed. 58 (2019) 11779 –11784.
    [46] T. Wada, T. Sakuma, R. Sakai, H. Uehara, Xianglian, H. Takahashi, O. Kamishima, N. Igawa, S.A. Danilkin, Inter-atomic force constants of Ag2O from diffuse neutron scattering measurement, Solid State Ion 225 (2012) 18–21.
    [47] Y. Chen, G. Zhu, M. Hojamberdiev, J. Gao, R. Zhu, C. Wang, X. Wei, P. Liu, Three-dimensional Ag2O/Bi5O7I p–n heterojunction photocatalyst harnessing UV–vis–NIR broad spectrum for photodegradation of organic pollutants, J. Hazard. Mater. 344 (2018) 42–54.
    [48] R. M. Mohamed, A. A. Ismail, M. W. Kadi, A.S. Alresheedi, I. A. Mkhalid, Facile synthesis of mesoporous Ag2O−ZnO heterojunctions for efficient promotion of visible light photodegradation of tetracycline, ACS Omega 5 (2020) 33269−33279.
    [49] W. Zhao, Q. Zhang, H. Wang, J. Rong, L. E, Y. Dai, Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect, Nano Energy 73 (2020) 104783.
    [50] H. Pan, H. Chu, Z. Pan, S. Zhao, M. Yang, J. Chai, S. Wang, D. Chi, D. Li, Large-scale monolayer molybdenum disulfide (MoS2) for mid-infrared photonics, Nanophotonics 9(16) (2020) 4703–4710.
    [51] P. Chen, J. Ni, Y. Liang, B. Yang, F. Jia, S. Song, Piezo-Photocatalytic reduction of Au(I) by defect-rich MoS2 nanoflowers for efficient gold recovery from a thiosulfate solution, ACS Sustainable Chem. Eng. 9 (2021) 589−598.
    [52] S. Li, X. Ning, P. Hao, Y. Cao, J. Xie, J. Hu, Z. Lu, A. Hao, Defect-rich MoS2 piezocatalyst: Efficient boosting piezocatalytic activation of PMS activity towards degradation organic pollutant, Dyes Pigm. 206 (2022) 110678.
    [53] S. M. Peiris, J. S. Sweeney, A. J. Campbell, Pressure‐induced amorphization of covellite, CuS, J. Chem. Phys. 104 (1996) 11–16.
    [54] A.Q. Malik, T.G. Mir, O. Amin, M. Sathish, D. Kumar, Synthesis, characterization, photocatalytic effect of CuS–ZnO nanocomposite on photodegradation of Congo red and phenol pollutant, Inorg. Chem. Commun. 143 (2022) 109797.
    [55] F.N. Pardo, L. Jin, R. Adhikari, X. Tong, D. Benetti, K. Basu, S. Vanka, H. G. Zhao, Z. T. Mi, S. H. Sun, V. M. Castano, A. Vomiero, F. Rosei, Nanofiber-supported CuS nanoplatelets as high efficiency counter electrodes for quantum dot-based photoelectrochemical hydrogen production, Mater. Chem. Front. 1 (2017) 65.
    [56] Z. Xu, T. Li, F. Zhang, X. Hong, S. Xie, M Ye, W. Guo, X Liu, Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum–dot solar cells, Nanoscale 9 (2017) 3826.
    [57] S. Kalyan, A. Bhosale, P.D. Patil, N.B. Bahadure, CuS/GO composite for high performance Lithium ion storage, Appl. Surf. Sci. Adv. 11 (2022) 100285.
    [58] Y. Kwon, G. Lim, S. Kim, S.H. Ryu, H. Lim, Y. Choa, Effect of localized surface plasmon resonance on dispersion stability of copper sulfide nanoparticles, Appl. Surf. Sci. 477 (2019) 204–210.
    [59] L. Tan, Z. Wu, X. Wang, J. Sun, Facile synthesis of CuS mesostructures with high photothermal conversion efficiency, RSC Adv. 5 (2015) 35317.
    [60] G. Heidari, M. Rabani, B. Ramezanzadeh, Application of CuS–ZnS PN junction for photoelectrochemical water splitting, Int. J. Hydrog. Energy 42 (2017) 9545–9552.
    [61] M.M. Sabzehmeidan, H. Karimi, M. Ghaedi, Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning, Polyhedron 170 (2019) 160–171.
    [62] Y. Ren, D. Zeng, W.J. Ong, Interfacial engineering of graphitic carbon nitride (g–C3N4) –based metal sulfide heterojunction photocatalysts for energy conversion: a review, Chin. J. Catal. 40 (2019) 289–315.
    [63] Y.C. Yang, Y. Liu, J.H. Wei, C.X. Pan, R. Xiong, J. Shi, Electrospun nanofibers of p–type BiFeO3/n–type TiO2 heterojunctions with enhanced visible light photocatalytic activity, RSC Adv. 4 (2014) 31941.
    [64] S. Liang, D. Zhang, X. Pu, X. Yao, R. Han, J. Yin, X. Ren, A novel Ag2O/g–C3N4 p–n heterojunction photocatalysts with enhanced visible and near-infrared light activity, Sep. Purif. Technol. 210 (2019) 786–797.
    [65] Y. Zhang, R. Wu, N. Zhang, H. Jing, J. Yue, S. Wei, F. Ouyang, CuS@ZnIn2S4 p–n type heterojunction photocatalyst with LED visible light response, Mater. Lett. 345 (2023) 134445.
    [66] M.T.L. Lai, K.M. Lee, T.C.K. Yang, C.W. Lai, C.Y. Chen, M.R. Johan, J.C. Juan, Highly effective interlayer expanded MoS2 coupled with Bi2WO6 as p–n heterojunction photocatalyst for photodegradation of organic dye under LED white light, J. Alloys Compd. 953 (2023) 169834.
    [67] S. Khoomortezaei, H. Abdizadeh, M.R. Golobostanfard, Ferro–photocatalytic enhancement of photoelectrochemical water splitting using the WO3/BiFeO3 heterojunction, Energy Fuels 35 (2021) 9623−9634.
    [68] C. Hao, W. Wang, R. Zhang, B. Zou, H. Shi, Enhanced photoelectrochemical water splitting with TiO2@Ag2O nanowire arrays via p-n heterojunction formation, Sol. Energy Mater. Sol. Cells 174 (2018) 132–139.
    [69] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (second edition), William Andrew Publishing (2013) 1–49.
    [70] J. Wu, N. Qin, D. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration, Nano Energy 45 (2018) 44–51.
    [71] K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Construction of core–shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production, Chem. Eng. J. 454 (2023) 140053.
    [72] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M.R. Darvishi, ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S–doped ZnO nanoparticles under visible light radiation, Ind. Eng. Chem. Res. 59 (2020) 15894–15911.
    [73] M. Alshehri, F. Al-Marzouki, A. Alshehrie, M. Hafez, Synthesis, characterization and band alignment characteristics of NiO/SnO2 bulk heterojunction nanoarchitecture for promising photocatalysis applications, J. Alloys Compd. 757 (2018) 161–168.
    [74] Y. Lei, S. Xu, M. Ding, L. Li, Q. Sun, Z.L. Wang, Enhanced photocatalysis by synergistic piezotronic effect and exciton–plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures, Adv. Funct. Mater. 30 (2020) 2005716.
    [75] M. Ikram, H. Lv, Z. Liu, K. Shi, Y. Gao, Hydrothermally derived p-n MoS2–ZnO from p-p MoS2-ZIF-8 for an efficient detection of NO2 at room temperature, J. Mater. Chem. A 9 (2021) 14722.
    [76] C. Liu, S. Mao, M. Shi, X. Hong, D. Wang, F. Wang, M. Xia, Q. Chen, Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering, Chem. Eng. J. 449 (2022), 137757.
    [77] E.A. Volnistem, R.D. Bini, D.M. Silva, J.M. Rosso, G.S. Dias, L.F. C´otica, I.A. Santos, Intensifying the photocatalytic degradation of methylene blue by the formation of BiFeO3/Fe3O4 nanointerfaces, Ceram. Int. 46 (2020) 18768–18777.
    [78] F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B. J. Nelson, S. Pan´e, Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation, iScience 4 (2018) 236–246.
    [79] T. Ahamad, A. Aldalbahi, S.M. Alshehri, S. Alotaibi, S. Alzahly, Z.B. Wang, P. X. Feng, Enhanced photovoltaic performance of dye-sensitized solar cells based Ag2O doped BiFeO3 hetrostructures, Sol. Energy 220 (2021) 758–765.
    [80] L. Camacho-Escobar, R.E. Palma-Goyes, J. Ortiz-Landeros, I. Romero-Ibarra, O.A. Gamba-V´asquez, J. Vazquez-Arenas, Unraveling the structural and composition properties associated with the enhancement of the photocatalytic activity under visible light of Ag2O/BiFeO3-Ag synthesized by microwave-assisted hydrothermal method, Appl. Surf. Sci. 521 (2020) 146357.
    [81] X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Ag2O as a new visible-light photocatalyst: self stability and high photocatalytic activity, Chem. Eur. J. 17 (2011) 7777–7780.
    [82] H. Xu, J. Xie, W. Jia, G. Wu, Y. Cao, The formation of visible light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition, J. Colloid Interface Sci. 516 (2018) 511–521.
    [83] X.J. Wen, C.G. Niu, L. Zhang, C. Liang, G.M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight, Appl. Catal. B 221 (2018) 701–714.
    [84] Z. Lia, H. Dong, Z. Wu, J. Shen, D. Xu, R. He, L. Wan, S. Zhang, Novel p–n type porous Ag2O/Bi5O7I heterojunction for Uv–Vis-NIR activated high efficient photocatalytic degradation of bisphenol A: photoelectric properties and degradation mechanism, Appl. Surf. Sci. 529 (2020), 147162.
    [85] X. Hu, X. Liu, J. Tian, Y. Li, H. Cui, Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator, Catal. Sci. Technol. 7 (2017) 4193.
    [86] V.T. Tran, D.H. Chen, Ag2O@BiFeO3 heterostructure composite coupling built-in electric field with piezopotential for enhanced photocatalytic pollutant degradation and photoelectrochemical water splitting, Appl. Surf. Sci. 625 (2023) 157175.
    [87] L. Di, H. Yang, T. Xian, X. Chen, Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation, Nanoscale Res. Lett. 13 (2018) 257.
    [88] D. Zhang, C. Su, H. Li, X. Pu, Y. Geng, Synthesis and enhanced piezophotocatalytic activity of Ag2O/K0.5Na0.5NbO3 composites, J. Phys. Chem. Solids 139 (2020) 109326.
    [89] X. Lu, Q. Li, L. Wang, W. Jiang, R. Luo, M. Zhang, C. Cui, Z. Tian, G. Zhu. Fabrication of one dimensional hierarchical WO3/BiOI heterojunctions with enhanced visible light activity for degradation of pollutants, RSC Adv. 11 (2021) 16608.
    [90] A. Sarkar, A. K. Singh, D. Sarkar, G. G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion, ACS Sustainable Chem. Eng. 3 (2015) 2254–2263.
    [91] Y. Chen, X. Deng, J. Wen, J. Zhu, Z. Bian, Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants, Appl. Catal. 258 (2019) 118024.
    [92] X. Ren, A. Sangle, S. Zhang, S. Yuan, Y. Zhao, L. Shi, R.L.Z. Hoye, S. Cho, D. Li, J.L. MacManus-Driscoll, Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures, J. Mater. Chem. A 4 (2016) 10203.
    [93] C. Liu, Y. Qiu, F. Wang, K. Wang, Q. Liang, Z. Chen, Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting, Adv. Mater. Interfaces 4 (2017) 1700681.
    [94] R. Zhang, X. Wu, Y. Li, W. Shao, Y. Zhang, Z. Liu, J. Nie, J. Tan, W. Ye, Enhanced piezo-photocatalytic performance by piezoelectric and visible light photoexcitation coupling through piezoelectric Na0.5Bi0.5TiO3 micron crystals, RSC Adv. 10 (2020) 7443.
    [95] M. Venkatesan, W. C. Chen, C. J. Cho, L. Veeramuthu, L. G. Chen, K. Y. Li, M. L. Tsai, Y. C. Lai, W. Y Lee, W. C. Chen, C. C. Kuo, Enhanced piezoelectric and photocatalytic performance of flexible energy harvester based on CsZn0.75Pb0.25I3/CNC–PVDF composite nanofibers, Chem. Eng. J. 433 (2022) 133620.
    [96] D. Zhang, C. Su, H. Li, X. Pu, Y. Geng, Synthesis and enhanced piezophotocatalytic activity of Ag2O/K0.5Na0.5NbO3 composites, J. Phys. Chem. Solids 139 (2020) 109326.
    [97] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Enhanced ferroelectric-nanocrystal–based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect, Nano Lett. 15 (2015) 2372–2379.
    [98] R. Tao, C. Shao, X. Li, X. Li, S. Liu, S. Yang, C. Zhao, Y. Liu, Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability, J. Colloid Interface Sci. 529 (2018) 404–414.
    [99] T. Bavani, J. Madhavan, S. Prasad, M.S. AlSalhi, M.J. AlJaafreh, A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity, Environ. Pollut. 269 (2021) 116067.
    [100] T. Fan, C. Chen, Z. Tang, Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation, RSC Adv. 6 (2016) 9994.
    [101] S. Chaiwichian, K. Wetchakun, W. Kangwansupamonkon, N. Wetchakun, Novel visible light-driven BiFeO3-Bi2WO6 nanocomposites toward degradation of dyes, J. Photochem. Photobiol. A Chem. 349 (2017) 183–192.
    [102] H. Li, Y. Xiong, Y. Wang, W. Ma, J. Fang, X. Li, Q. Han, Y. Liu, C. He, P. Fang, High piezocatalytic capability in CuS/MoS2 nanocomposites using mechanical energy for degrading pollutants, J. Colloid Interface Sci. 609 (2022) 657- 666.
    [103] C. Jin, J. Kang, Z. Li, M. Wang, Z. Wu, Y. Xie, Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate, Appl. Surf. Sci. 514 (2020) 146076.
    [104] K. Atacan, N. Güy, M. ¨Ozacar, Design and synthesis of magnetically separable CuFe2O4/MoS2 p-n heterojunction for photocatalytic efficiency of Rhodamine B degradation, Colloids Interface Sci. Commun. 40 (2021) 100359.
    [105] S. Guo, H. Luo, Y. Li, J. Chen, B. Mou, X. Shi, G. Sun, Structure-controlled threedimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline, J. Alloy. Compd. 852 (2021) 157026.
    [106] B. Huo, F. Meng, J. Yang, Y. Wang, J. Qi, W. Ma, Z. Wang, J. Wang, Z. Wang, High efficiently piezocatalysis degradation of tetracycline by few-layered MoS2/GDY: mechanism and toxicity evaluation, Chem. Eng. J. 436 (2022) 135173.
    [107] Y. Chen, S. Lan, M. Zhu, Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate, Chin. Chem. Lett. 32 (2021) 2052–2056.
    [108] M. Pan, S. Liu, J.W. Chew, Unlocking the high redox activity of MoS2 on dualdoped graphene as a superior piezocatalyst, Nano Energy 68 (2020) 104366.
    [109] H. Lv, M. Lin, C. Yu, H. Wang, M. Li, L. Zhang, Z. Liu, Z. Chen, Pd decorated MoS2 nanoflowers as photothermal catalyst for enhanced NIR-induced 4-nitrophenol reduction, J. Environ. Chem. Eng. 11 (2023) 110375.
    [110] M. Mahanthappa, N. Kottamd, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuS-CdS nanocomposite under visible light irradiation, Appl. Surf. Sci. 475 (2019) 828–838.
    [111] M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis, J. Mater. Chem. A 2 (2014) 7517–7525.
    [112] L. Guo, K. Zhang, X. Han, Q. Zhao, D. Wang, F. Fu, 2D In-plane CuS/Bi2WO6 p-n heterostructures with promoted visible-light-driven photo-Fenton degradation performance, Nanomater. 9 (2019) 1151.
    [113] S. Muralikrishna, K. Manjunath, D. Samrat, V. Reddy, T. Ramakrishnappa, D.H. Nagaraju, Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction, RSC Adv. 5 (2015) 89389–89396.
    [114] V.V. Kutwade, K.P. Gattu, M.E. Sonawane, F. Khan, D.A. Tonpe, M. Balal, S.R. Barman, R. Sharma, Growth and exploration of visible-light-driven enhanced photocatalytic activity of Cu1–XCrxS/CdS heterojunction thin film for active dye degradation, Appl. Phys. A 128 (2022) 625 .
    [115] P. Borthakur, P.K. Boruah, P. Das, M.R. Das, CuS nanoparticles decorated MoS2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water, New J. Chem. 45 (2021) 8714.
    [116] X. Zhou, B. Shen, A. Lyubartsev, J. Zhai, N. Hedin, Semiconducting piezoelectric heterostructures for piezo–and piezophotocatalysis, Nano Energy 96 (2022) 107141.
    [117] X. Jia, F. Wang, X. Xu, C. Liu, L. Zhang, S. Jiao, G. Zhu, X. Wang, G. Yu, Highly efficient photocatalytic degradation of tetracycline by modifying UiO-66 via different regulation strategies, ACS Omega 8 (2023) 27375–27385.
    [118] G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol. 12 (2015) 603−616.
    [119] Q. Liu, Y. Zheng, L. Zhong, X. Cheng, Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat, J. Environ. Sci. 28 (2015) 28−36.
    [120] A. Ahmad, X. Gu, L. Li, S. Lu, Y. Xu, X. Guo, Effects of pH and anions on the generation of reactive oxygen species (ROS) in nZVI−rGo-activated persulfate system, Water Air Soil. Pollut. 226 (2015) 369.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE