簡易檢索 / 詳目顯示

研究生: 邱俊傑
Chiu, Chun-Chieh
論文名稱: 層化非對稱剪裁光正交分頻多工超密集可見光通訊網路上於多重層級使用低階調變模式且具功率效率考量之資源配置
Resource Allocation Using Low Modulation Modes on MultiLayers with Consideration of Power Efficiency and Throughput Maximization in LACO-OFDM UD-VLC Networks
指導教授: 許靜芳
Hsu, Ching-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 59
中文關鍵詞: 可見光網路超密集網路層化非對稱剪裁光正交分頻多工非正交多重存取低階調變模式功率效率資源分配
外文關鍵詞: visible light communication (VLC), ultra-dense Network (UDN), layered asymmetrically clipped optical OFDM (LACO-OFDM), non-orthogonal multiple access (NOMA), low modulation mode, power efficiency, resource allocation
相關次數: 點閱:73下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著聯網需求的提升與普及化,高效能且高穩定的網路服務日漸重要,隨者聯網設備的日益增長,無線電頻率將面臨不敷使用的狀況。超密集可見光通訊網路作為一個可能的解決方案,其具有更加寬廣的頻譜與高效能的優點。在可見光網路中,非對成剪裁光正交分頻多工是常用的調變多工,藉由主動增加子載波的改良,層化非對成剪裁光正交分頻多工可以增加可見光通訊的傳輸速率。在層化非對成剪裁光正交分頻多工的超密集可見光通訊網路中,非正交多重存取與正交多工存取技術的混合使用可以提升效能並減少小區間干擾。
    層化非對成剪裁光正交分頻多工的超密集可見光通訊網路中的資源配置問題需要考慮有限的資源與調變模式選擇的靈活性,並在兩者的取捨中最大化總流量。過往有文獻將其轉換成動態規劃的問題,但求得最佳解答的代價是必須經歷耗時的計算過程。也有文獻只透過逐層選擇調變模式,此方法可以快速完成配置,但也會使較多的用戶無法被服務。為了保持與前一種方法相同的總流量,此方法也需要耗費較多的功耗。本論文分析不同的調變模式配置可以達到的傳輸速率與相對應所需的功耗。然後提出一種具有成本效益的資源配置,在給定的傳輸速率需求之下,給予用戶一個使用盡可能低的功耗,並且能滿足速率需求的調變模式配置。本文也對於剩餘資源提出一種剩餘資源配置,希望能讓所有已被服務的用戶都能得到剩餘資源,提升總體效能。最後,模擬數據顯示我們提出的剩餘資源配置在總體流量和功率效率上分別有大約 40% 和 50% 的提升。

    High-efficiency and high-stability network services are becoming increasingly important with improving and popularizing networking requirements. With the increasing number of internet devices, radio frequencies (RF) will be insufficient. As a possible solution, the ultra-dense visible light communication (UD-VLC) network has the advantages of a wider spectrum and high performance. By using more subcarriers, layered asymmetrically clipped optical OFDM (LACO-OFDM) achieves higher rate than ACO-OFDM, which is commonly used in VLC. For LACO-OFDM UD-VLC multiuser downlink network, the hybrid non-orthogonal multiple access (NOMA) and OMA can enhance the performance and against the inter-cell interference (ICI).
    Resource allocation in LACO-OFDM UD-VLC networks needs to consider both resource constraints and flexibility in modulation mode selection. A previous work calculated all assignments and got the most perfect solution, which took a lot of computing time. Another work simply assigned the modulation modes layer by layer. The cost of reducing computation time and maintaining throughout level is the more power consumption and higher outage probability. In this paper, we analyze the power consumption and achievable rate of different modulation mode schemes. We then propose a cost-effective resource allocation, which assigns user equipment (UE) a modulation mode scheme that consumes the lowest power while satisfying the rate requirement. For the remaining resources, we propose a leftover resource allocation that benefits all served UEs and thus improves the performance, with 40% increase in throughput and 50% increase in power efficiency.

    摘要 i Abstract iii 誌謝 v Contents vii List of Figures ix List of Tables x Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 VLC 4 2.2 Multiplexing Techniques on VLC 5 2.3 Multiple Access Techniques on VLC 6 Chapter 3 Related Work 9 3.1 Overlapped Clustering 9 3.2 Frequency Reuse 11 3.2.1 Graph-Coloring Frequency Reuse 11 3.2.2 Weighted Graph-Coloring Frequency Reuse 12 3.3 TDMA Scheduling 13 3.3.1 TDMA Round Robin Scheduling 13 3.3.2 TDMA Guaranteed Admission Scheduling 14 3.4 Resource Allocation 14 3.4.1 Dynamic 2-tier Resource Allocation 14 3.4.2 Heuristic Fast Resource Allocation 16 Chapter 4 System Model 18 4.1 NOMA 19 4.2 LACO-OFDM 20 Chapter 5 Proposed Scheme 22 5.1 The Formulation of Resource Allocation 22 5.2 Motivation and Power Consumption Analysis 23 5.3 Proposed Scheme Framework 29 5.3.1 TDMA Scheduling 29 5.4 Proposed Resource Allocation 30 5.4.1 Rate-Guaranteed Resource Allocation 32 5.4.2 Leftover Resource Allocation 32 5.4.3 Leftover Power Allocation 34 5.5 Time Complexity Analysis 36 Chapter 6 Performance Evaluation 38 6.1 Performance Metrics 40 6.2 Performance Analysis 41 Chapter 7 Conclusion 51 References 52 Appendix A CEMMS Table 56

    [1] C. Pohlmann, “Visible light communication,” Seminar Kommunikationsstandards der Medizintechnik, pp. 1–14, 2010.
    [2] H. Haas, “Visible light communication,” Opt. Fiber Commun. Conf., pp. 1–72, 2015.
    [3] Y. Tanaka, S. Haruyama and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), vol.2, pp. 1325-1329, 2000.
    [4] M. Ayyash et al., “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun., vol. 54, no. 2, pp. 64-71, Feb. 2016.
    [5] B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, Aug. 2015.
    [6] Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct detection optical wireless transmission,” Opt. Express, vol. 23, no. 9, pp. 12382–12393, May 2015.
    [7] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightw. Technol., vol. 34, no. 6, pp. 1533–1544, Mar. 15, 2016.
    [8] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545, 4th Quart., 2016.
    [9] S. Stefanatos and A. Alexiou, “Access point density and bandwidth partitioning in ultra dense wireless networks,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3376–3384, Sep. 2014.
    [10] M. Kamel, W. Hamouda, and A. Youssef, “Performance analysis of multiple association in ultra-dense networks,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3818–3831, Sep. 2017.
    [11] S. Chen, F. Qin, B. Hu, X. Li, and Z. Chen, “User-centric ultra-dense networks for 5G: challenges, methodologies, and directions,” IEEE Wireless Commun. Mag., vol. 23, no. 2, pp. 78–85, Apr. 2016.
    [12] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047–2077, 4th Quart., 2015.
    [13] R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: Paving the way for user-centric design,” IEEE Wireless Commun., vol. 22, no. 2, pp. 8–16, Apr. 2015.
    [14] S. Feng, R. Zhang, W. Xu and L. Hanzo, “Multiple access design for ultra-dense VLC networks: Orthogonal vs non-orthogonal,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2218-2232, March 2019.
    [15] H. Haas, “High-speed wireless networking using visible light,” SPIE Newsroom, pp. 1–3, 2013.
    [16] S. Dimitrov and H. Haas, “Principles of LED light communications: Towards networked Li-Fi,” Cambridge, U.K.: Cambridge Univ. Press, 2015.
    [17] A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag., vol. 51, no. 12, pp. 26–32, Dec. 2013.
    [18] J. Armstrong, R. Green, and M. Higgins, “Comparison of three receiver designs for optical wireless communications using white LEDs,” IEEE Commun. Lett., vol. 16, no. 5, pp. 748–751, May 2012.
    [19] M. Sanya, L. Djogbe, A. Vianou, and C. Aupetit-Berthelemot, “DC-biased optical OFDM for IM/DD passive optical network systems,” IEEE J. Opt. Commun. Netw., vol. 7, no. 4, pp. 205–214, Apr. 2015.
    [20] X. Li, J. Vucic, V. Jungnickel, and J. Armstrong, “On the capacity of intensitymodulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications,” IEEE Trans. Commun., vol. 60, no. 3, pp. 799–809, Mar. 2012.
    [21] J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron., vol. 42, no. 6, pp. 370-372, 16 March 2006.
    [22] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, “Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep. 2015.
    [23] L. Yin, X. Wu and H. Haas, “On the performance of non-orthogonal multiple access in visible light communication,” IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1354-1359, 2015.
    [24] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.
    [25] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li and K. Higuchi, “Nonorthogonal multiple access (NOMA) for cellular future radio access,” IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013.
    [26] A. Dhariwal, “Performance evaluation of energy efficiency and spectral efficiency: NOMA vs OFDMA,” J Telecommun Syst Manage 9, Sep. 2020.
    [27] H. Li, Z. Huang, Y. Xiao, S. Zhan and Y. Ji, “A power and spectrum efficient NOMA scheme for VLC network based on hierarchical pre-distorted LACO-OFDM,” IEEE Access, vol. 7, pp. 48565-48571, 2019.
    [28] S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access, vol. 4, pp. 2705–2713, 2016.
    [29] A. Soh, “Resource allocation with consideration of throughput maximization and energy efficiency on overlapped LACO-OFDM VLC networks”, National Cheng Kung University, Institute of Computer Science and Information Engineering, 2020.
    [30] D. P. Bertsekas, “Dynamic programming and optimal control” Belmont, MA, USA: Athena Scientific, vol. 1, 4th ed., 2017.
    [31] I. Moreno and C.-C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express, vol. 16, no. 3, pp. 1808-1819, 2008.
    [32] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
    [33] T. Komine and M. Nakagawa, “Fundamental analysis for visible light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.
    [34] K. Cho and D. Yoon, “On the general BER expression of one and two dimensional amplitude modulations,” IEEE Trans. Commun., vol. 50, no. 7, pp. 1074–1080, Jul. 2002.
    [35] X. Zhang, Q. Wang, R. Zhang, S. Chen, and L. Hanzo, “Performance analysis of layered ACO-OFDM,” IEEE Access, vol. 5, pp. 18366–18381, 2017.
    [36] F. Yang, Y. Sun and J. Gao, “Adaptive LACO-OFDM with variable layer for visible light communication,” IEEE Photonics J., vol. 9, no. 6, pp. 1-8, Dec. 2017.
    [37] A. Aldalbahi et al., “Extending ns3 to simulate visible light communication at network level,” 23rd International Conference on Telecommunications (ICT), pp. 1-6, 2016

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE